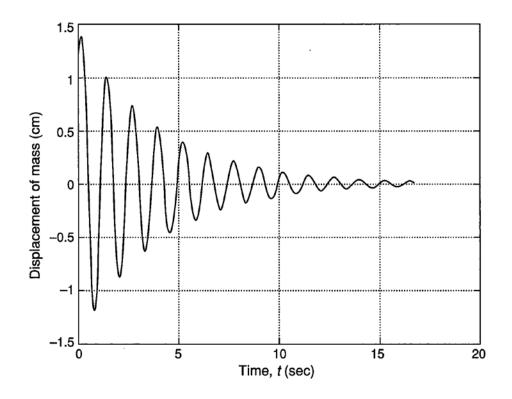
Name(s)

Homework 7

Due: In class, Friday, Oct. 12

1. (10 pts) The bouncing mode of the vertical vibration of a car suspension system is found to be optimal when it is underdamped. The desirable damping constant of the shock absorber is determined by the following design specification:

The car body is lifted up by a small amount above its static equilibrium position (the tires are still in touch with the ground) and then released. During the bouncing motion of the car, its lowest position below static equilibrium should be approximately 20% of the amount of the original lift.


Assume the mass of the car is 2,400 kg and is equally supported by the four tires. Also, assume the stiffness of each suspension spring is k = 25,000 N/m.

(1) (7 pts) The damping ratio, ξ , of the system corresponding to the above design specification should be:

- a) $\xi = 0.1332$
- b) $\xi = 0.2297$
- c) $\xi = 0.4559$
- d) $\xi = 0.5732$
- e) $\xi = 07249$

(2) (3 pts) The shock absorber of the suspension system should give a damping constant, c in unit N-s/m, of:

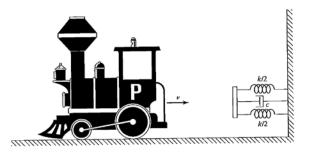
- a) c = 11114
- b) *c* = 13492
- c) *c* = 14126
- d) *c* = 15943
- e) *c* = 18258

(1) (5 pts) The damping ratio of the system is about equal to

a) $\xi = 0.02$ b) $\xi = 0.035$ c) $\xi = 0.05$ d) $\xi = 0.065$

(2) (5 pts) The natural frequency of the system in rad/s is about equal to

a) $\omega_n = 2.57$ b) $\omega_n = 3.93$ c) $\omega_n = 5.03$ d) $\omega_n = 6.11$


(3) (5 pts) The initial velocity of the mass in cm/s is estimated *from the graph* to be

a) $\dot{y}_o = -10$ b) $\dot{y}_o = 1.0$ c) $\dot{y}_o = 10$ d) $\dot{y}_o = 20$

(4) (5 pts) The expression, $y(t) = Ae^{-\omega_n \xi t} \sin(\omega_d t + \phi)$, that describes the displacement of the mass is approximately given by

- a) $y(t) = 1.28e^{-\xi \omega_n t} \sin(\omega_d t + 1.12)$
- b) $y(t) = 1.28e^{-\xi \omega_n t} \sin(\omega_d t + 1.37)$
- c) $y(t) = 1.35e^{-\xi \omega_n t} \sin(\omega_d t + 1.37)$
- d) $y(t) = 1.35e^{-\xi \omega_n t} \sin(\omega_d t + 1.76)$
- e) $y(t) = 1.14e^{-\xi \omega_n t} \sin(\omega_d t + 1.76)$
- f) $y(t) = 1.14e^{-\xi \omega_n t} \sin(\omega_d t + 1.12)$

3. (25 pts) A railroad car of mass 2000 kg traveling at a velocity of 10 m/s is to be stopped at the end of the track by a spring-damper assembly, as shown below. The stiffness of the assembly is k = 40,000 N/m and the damping constant is c = 10,000 N-s/m.

- (1) (3 pts) *Write down* the governing equation of the system *with initial conditions* corresponding to the moment when the railroad car engages with the spring-damper assembly.
- (2) (2 pts) The motion of the car is given by
 - a) $x(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$

b)
$$x(t) = (A_1 + A_2 t)e^{-\omega_n t}$$

c) $x(t) = e^{-\xi \omega_n t} (A_1 \cos \omega_d t + A_2 \sin \omega_d t)$

(3) (10 pts) Perform necessary calculations and then generate a smooth matlab plot of x(t) with labels, making sure it satisfies ICs (submit the plot). From the plot, identify the maximum displacement of the car and the time taken to reach it from the choices below (x_{max} in meter t_{max} in second):

a) $x_{\text{max}} = 0.97$ and $t_{\text{max}} = 0.19$	b) $x_{\text{max}} = 1.16$ and $t_{\text{max}} = 0.26$
c) $x_{\text{max}} = 1.72$ and $t_{\text{max}} = 0.35$	d) $x_{\text{max}} = 2.23$ and $t_{\text{max}} = 0.31$
e) $x_{\text{max}} = 2.69$ and $t_{\text{max}} = 0.42$	f) $x_{\text{max}} = 3.71$ and $t_{\text{max}} = 0.63$

(4) (10 pts) Also, generate and submit a smooth matlab plot of the contact force between the car and the stopping assembly (ie. the sum of $F_k(t)$ and $F_c(t)$). From the plot, identify the maximum contact force during the stopping process from the choices below (F_{max} in kN):

- a) $F_{\text{max}} = 11.2$ b) $F_{\text{max}} = 40.4$
- c) $F_{\text{max}} = 100$ d) $F_{\text{max}} = 205.5$
- e) $F_{\text{max}} = 400$ f) $F_{\text{max}} = 500$

Each plot is 7 pts.