Home 14 (suggested)

- 9.27 An electronic instrument is to be isolated from a panel that vibrates at frequencies ranging from 25 Hz to 35 Hz. It is estimated that at least 80 percent vibration isolation must be achieved to prevent damage to the instrument. If the instrument weights 85 N, find the necessary static deflection of the isolator.
- 9.35 A compressor of mass 120 kg has a rotating unbalance of 0.2 kg-m. If an isolator of stiffness 0.5 MN/m and damping ratio 0.06 is used, find the range of operating speeds of the compressor over which the force transmitted to the foundation will be less than 2500 N.
- 9.43 When a washing machine, of mass 200 kg and an unbalance 0.02 kg-m, is mounted on an isolator, the isolator deflects by 5 mm under the static load. Find (a) the amplitude of the washing machine and (b) the force transmitted to the foundation at the operating speed of 1200 rpm.
- An air compressor of mass 200 kg, with an unbalance of 0.01 kg-m, is found to have a large amplitude of vibration while running at 1200 rpm. Determine the mass and spring constant of the absorber to be added if the natural frequencies of the system are to be at least 20 percent from the impressed frequency.
- An electric motor, having an unbalance of 2 kg-cm, is mounted at the end of a steel cantilever beam, as shown in Fig. 9.50. The beam is observed to vibrate with large amplitudes at the operating speed of 1500 rpm of the motor. It is proposed to add a vibration absorber to reduce the vibration of the beam. Determine the ratio of the absorber mass to the mass of the motor needed in order to have the lower frequency of the resulting system equal to 75 percent of the operating speed of the motor. If the mass of the motor is 300 kg, determine the stiffness and mass of the absorber. Also find the amplitude of vibration of the absorber mass.

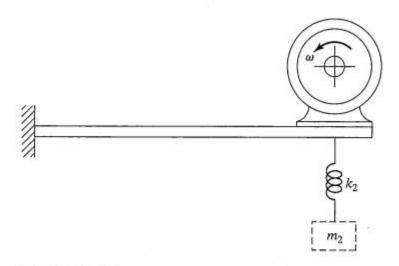


FIGURE 9.50