Contents

Preface		xi
Nomenclatur	·e	XV
Chapter 1	Introduction	1
1.1	Indoor Air Pollution and Risks	2
1.2	Management and Assessment of Risk	9
1.3	Liability	20
1.4	Indoor Air Pollution Control Strategy	21
1.5	Fundamental Calculations	26
1.6	Government Regulations	46
1.7	Standards	52
1.8	Contributions from Professionals	54
1.9	Components of Industrial Ventilation Systems	55
1.10	Classification of Ventilation Systems	56
1.11	Deficiencies in Present Knowledge	68
1.12	Professional Literature	69
1.13	Closure	75
	Chapter 1 Problems	77
Chapter 2	The Respiratory System	83
2.1	Physiology	87
2.2	Respiratory Fluid Mechanics	95
2.3	Analytical Models of Heat and Mass Transfer	107
2.4	Toxicology	127
2.5	Sick Buildings	136
2.6	Bioaerosols	144
2.7	Dose-Response Characteristics	150
2.8	Risk Analysis	162
2.9	Closure	167
	Chapter 2 Problems	168
Chapter 3	Design Criteria	173
3.1	Contaminant Exposure Levels	175
3.2	Instruments to Measure Pollutant Concentration	183
3.3	Fire and Explosion	191
3.4	Hearing and Noise	208
3.5	Thermal Comfort and Heat Stress	222
3.6	Odors	231
3.7	Radiation	236
3.8	General Safety	238
3.9	Engineering Economics	240
3.10	Closure	247
	Chapter 3 Problems	248

viii		Contents
Chapter 4	Estimation of Pollutant Emission Rates	257
4.1	Experimental Measurements	259
4.2	Empirical Equations	265
4.3	Emission Factors	271
4.4	Puff Diffusion	276
4.5	Evaporation and Diffusion	279
4.6	Drop Evaporation	314
4.7	Leaks	321
4.8	Closure	334
	Chapter 4 Problems	335
Chapter 5	General Ventilation and the Well-Mixed Model	343
5.1	Definitions	343
5.2	Thermodynamics of Unventilated Enclosures	351
5.3	Dillution Ventilation with 100% Make-up Air	354
5.4	Time-Varying Source, Ventilation Flow Rate, or Make-up Air Concentration	361
5.5	Removal by Solid Surfaces	366
5.6	Recirculation	370
5.7	Partially Mixed Conditions	376
5.8	Well-Mixed Model as an Experimental Tool	379
5.9	Clean Rooms	383
5.10	Infiltration and Exfiltration	388
5.11	Split Flow Ventilation Booths	396
5.12	Mean Age of Air and Ventilation Effectiveness	403
5.13	Make-up Air Operating Costs	410
5.14	Tunnel Ventilation	413
5.15	Closure	423
	Chapter 5 Problems	425
Chapter 6	Present Local Ventilation Practice	437
6.1	Control of Particles	441
6.2	Control of Vapors from Open Surface Vessels	453
6.3	Control Systems for Specific Applications	458
6.4	Bulk Materials Handling	462
6.5	Canopy Hoods for Buoyant Sources	466
6.6	Air Curtains for Buoyant Sources	470
6.7	Surface Treatment	475
6.8	Building Air Inlets and Exhaust Stacks	479
6.9	Unsatisfactory Performance	483
6.10	Exhaust Duct System Design	484
6.11	Fan Performance and Selection	495
6.12	Closure Chapter 6 Problems	508 509
Chanter 7	Ideal Flow	517
71	Fundamental Concents	517
7.1	Two-Dimensional Flow Fields	527
73	Flementary Planar Ideal Flows	537
74	Elementary Axisymmetric Ideal Flows	539
· • •		557

Contents		ix
7.5	Flanged and Unflanged Inlets in Quiescent Air	543
7.6	Flanged and Unflanged Inlets in Streaming Flow	557
7.7	Multiple Flanged Rectangular Inlets	566
7.8	Flanged Inlets of Arbitrary Shape	567
7.9	Closure	570
	Chapter 7 Problems	571
Chapter 8	Motion of Particles	581
8.1	Particle Size	581
8.2	Statistical Analysis of Aerosols	583
8.3	Overall Collection Efficiency	598
8.4	Equations of Particle Motion	604
8.5	Freely Falling Particles in Quiescent Media	615
8.6	Horizontally Moving Particles in Quiescent Air	621
8.7	Gravimetric Settling in a Room	622
8.8	Gravimetric Settling in Ducts	624
8.9	Clouds	629
8.10	Stokes Number	633
8.11	Inertial Deposition in Curved Ducts	634
8.12	Closure	642
	Chapter 8 Problems	643
Chapter 9	Removing Particles from a Gas Stream	653
9.1	Cyclone Collectors	653
9.2	Other Inertial Separation Collectors and Sampling Issues	659
9.3	Impaction between Moving Particles	665
9.4	Filtration	687
9.5	Electrostatic Precipitators	709
9.6	Engineering Design – Selecting and Sizing Particle Collectors	723
9.7	Hoppers	725
9.8	Closure	726
	Chapter 9 Problems	728
Chapter 10	Application of CFD to Indoor Air Quality	733
10.1	Fundamentals of CFD	733
10.2	Flow around a Circular Cylinder	739
10.3	Modeling of Air Flows with Gaseous Contaminants	744
10.4	Modeling of Aerosol Particle Trajectories	762
10.5	Closure	766
	Chapter 10 Problems	769
References		775
Appendices		803
Index		847

Contents

X