
Gambit – Generation of grid for the Bénard problem
Author: John M. Cimbala, Penn State University

Latest revision: 12 February 2008

Introduction and Instructions:
In this document is a procedure that enables you to generate a two-dimensional, structured rectangular grid that will
be used with the CFD program Fluent to solve for the thermal instability between two plates – the Bénard problem.

Overall description of the problem and grid:
1. The computational domain for this problem is very simple – just a rectangle, as sketched below.

d

L

Warm wall

Cold wall

x
y

2. In the sketch, x is in the horizontal direction and y is in the vertical direction. Gravity acts downward (in the
negative y direction).

3. The bottom wall is hotter than the top wall, so that a thermal instability is possible, depending on the
Rayleigh number.

4. For all cases the distance d between the two walls is set to 2.00 mm (0.00200 m). However, domain length, L
varies with each student. [Each student is assigned a different value of length L.]

5. In other words, each student is assigned a different aspect ratio for his/her computational domain, where
aspect ratio is defined as AR = L/d, according to the following table:

Student PSU E-mail Assigned AR = L/d
aem277 7.0
axa962 7.2
bkj116 7.4
dxs961 7.6
edr141 7.8
gdl121 8.0
ggb110 8.2
gom106 8.4
gun100 8.6
jdt195 8.8
jsh293 9.0
krs289 9.2
kxk952 9.4
kzc124 9.6
msy117 9.8

Prof. Cimbala 10.0
mts244 10.2
nrk134 10.4

nwm108 10.6
prs153 10.8
pxk918 11.0
pxo132 11.2
spf136 11.4
suw154 11.6
sxk388 11.8
szj121 12.0
szs205 12.2
vbk104 12.4
vcp109 12.6
vri102 12.8
wxl184 13.0

mailto:vri102@psu.edu

Log on and start Gambit
1. Log onto any Windows or Linux computer that has a valid license for the Ansys-Fluent family of programs –

Gambit (grid generator) and Fluent (CFD solver).
2. Start Gambit. Note: If Gambit does not open properly, you may not have the proper path set up in your user

files. If this is the case, check with the system administrator.
3. In Gambit, when the mouse cursor is placed over a button, a short description of the function of that button

appears in the lower right window under Description. This is useful for understanding the commands.

Create some data points (vertices) for the desired geometry:
1. First, create a vertex at the lower-left corner of the computational domain. In Geometry, Vertex Command

Button. Under Vertex, right mouse click the top left icon called Create Vertex and then From Coordinates.
(In this learning module from now on, this type of command which requires a right click of the mouse is
preceded by “R-”. Here, for example, R-Create Vertex-From Coordinates).

2. In Create Real Vertex-Global, enter 0, -d/2, and 0 for x, y, and z coordinates respectively, where d is the
distance between the upper and lower channel walls in meters. Type a label for this vertex if you wish, and
Apply. A vertex is created, as indicated by a small plus sign at this location.

3. Vertices need to be created at the other three corners of the domain. Create vertices with coordinates
(0,d/2,0), (L,d/2,0), and (L,-d/2,0), where L is your assigned horizontal length of the computational domain.

4. Zoom in to see the vertices more clearly. The easiest way to do this is Fit to Window in the Global Control
area on the lower right of the Gambit screen.

5. In the main Gambit window near the upper left, File-Save. This will save your work so far. It is a good idea
to do this every so often, especially after a major task is completed.

Create edges from these vertices to define the computational domain:
1. Edges need to be created to define the domain. Under Geometry, Edge Command Button. (Note: If the option

is already open, clicking it again will make the options disappear! If this happens, click it again.)
2. Under Edge, R-Create Edge-Straight. The straight edge option should be the default.
3. Select (shift + left mouse click) the two bottom-most vertices, type in a label (“bottom” is suggested), and

Apply. A yellow line should appear indicating successful creation of this edge.
4. Similarly, create a straight edge called “top”.
5. Carefully create two other straight edges called “left” and “right”. Note: When creating the left and right

edges, be sure to choose the bottom vertex first, and then the top vertex, so that the edge direction is up for
both of these edges. This is important because these edges will be defined with periodic boundary conditions,
and they must therefore be oriented identically. Failure to follow these instructions will result in disaster.

6. Close the Create Straight Edge window.

Generate a face defining the computational domain:
1. Under Geometry, Face Command Button-R-Form Face-Wireframe.
2. Note: I like to select edges in mathematically positive counterclockwise order. Select the four edges just

created. These edges outline a closed face.
3. In Create Face From Wireframe, type in a label for this face if desired (“domain” is suggested), and Apply.

If all went well, a pretty blue outline of the face should appear on the screen; this is a face, which is now
ready to be meshed.

Link the right and left edges so they can be defined as periodic:
1. We want the left and right edges to be periodic, which means that whatever fluid flows out of or along the

right edge goes into or along the left edge. To do this properly, these two edges must be linked. In Operation,
Mesh Command Button-Edge Command Button.

2. In Edge, R-Link/Unlink Edges-Link Edge Meshes.
3. In Link Edge Meshes, select the left and right edges. The arrows that appear on the selected edges must be in

the same direction (up) for this to work properly, as mentioned previously.Verify that the Periodic option is
turned on. Apply. Close.

Specify the boundary types on all edges:
1. In order for the mesh to be properly transferred to Fluent, the edges must be assigned boundary types, such as

wall, axis, etc. In Operation, Zones Command Button-Specify Boundary Types Command Button.
2. In the Specify Boundary Types window, change Entity to Edges (which may or may not be the default). In

this problem, which is 2-D, boundary conditions are applied to edges rather than to faces.
3. Select the top-most edge of the computational domain. Change its Type to Wall, if necessary (that is usually

the default) and type in the name “top” or “top_wall” or “upper_wall” or something equally descriptive.
Apply. Turn on Show Labels to see that the boundary type was actually specified.

4. Similarly, make the bottom-most edge a wall called “bottom” or “bottom_wall” or “lower_wall”.
5. Select both the left and right edges, and assign their boundary type simultaneously as Periodic, with the label

“periodic”.
6. Close the Specify Boundary Types window, and save your work.

Define node points along the edges:
1. In Operation, Mesh Command Button-Edge Command Button-Mesh Edges. Mesh Edges should be the

default window that opens; if not, Mesh Edges.
2. Select the two horizontal edges (top and bottom), and in Mesh Edges, change the Spacing option from

Interval Size to Interval Count. Enter the desired number of node points (some value between 100 and 150 is
recommended here) as the Interval Count.

3. No clustering or bunching of nodes is required in this problem, so keep Ratio (in the Grading section of the
Mesh Edges window) as 1.0. Apply. Blue circles should appear at each created node point along these two
edges.

4. Now select the two vertical edges, and apply nodes to each of these (between 20 and 30 nodes are
recommended).

5. Now all the necessary edges have been assigned nodes; Close the Mesh Edges window. Save your work.

Generate the mesh on the face:
1. Under Mesh, Face Command Button. The default window that pops up should be Mesh Faces. If not, Mesh

Faces.
2. Select the face by shift clicking on one of its edges. Elements should be Quad by default; if not, change it.

Also change Type to Map if necessary. The Spacing options will be ignored since nodes have already been
defined on the appropriate edges of this face.

3. Generate the mesh by Apply. If all goes well, a structured mesh should appear.
4. You can now Close the Mesh Faces window.

Write out the mesh in the format used by Fluent, and then exit Gambit:
1. In the main Gambit window, File-Export-Mesh. (The default file name can be changed at this point if

desired.) Check the option to export a 2-D mesh, and Accept.
2. When the Transcript (at lower left) informs you that the mesh is done, File-Exit-Yes.
3. The mesh file should now be ready for use by Fluent.

