SURFACE TENSION

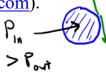
In this lesson, we will:

- Define and describe surface tension and contact angle
- Do some example problems that involve surface tension, namely, bubbles and capillary rise in a tube

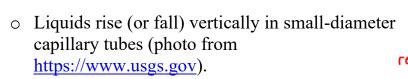
Surface Tension

• The *coefficient of surface tension* (or simply *surface tension*) σ_s is a measure of the force per unit length required to stretch the surface of a liquid.

$$\left\{G_{i}\right\} = \left\{\frac{F}{F}\right\} \quad \left[G_{i}\right] = \left[\frac{N}{N}\right]$$


• Alternatively, surface tension can also be thought of as the surface energy (or work) per unit area required to stretch the liquid surface.

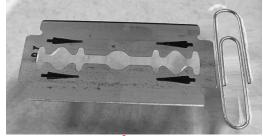
$$\left\{G_{i}\right\} = \left\{\frac{F \cdot L}{L^{2}}\right\} = \left\{\frac{F}{L}\right\}$$

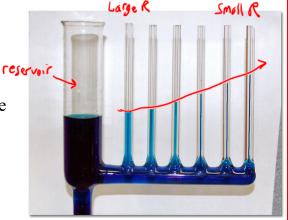


- Surface tension always acts *parallel* to the liquid surface.
- Some interesting consequences of surface tension:
 - A liquid when sprayed breaks into small spherical droplets (photo from

https://www.pesticidewise.com).

• The surface acts like a stretched film in tension; thus, objects heavier than the liquid can float on the surface (photo by the author).



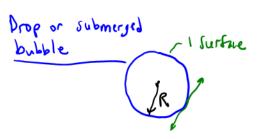

Notice that capillary rise height *increases* as tube diameter *decreases*.

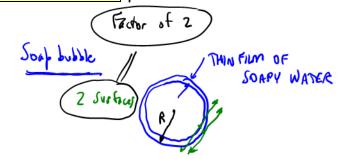
The top surface of the liquid is not flat, but rounded into what is known as a *meniscus*.

See my short YouTube video called "Surface Tension: It's a Bit of a Stretch!" for more

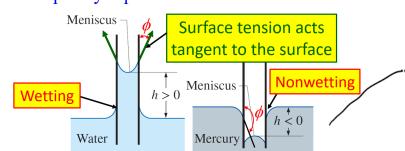
about surface tension, including how to measure it and how to analyze soap bubbles. https://youtu.be/50W95-a6DVM

From the video:


• U-frame measurement rig: $F = 2b\sigma$.


Spherical **droplet**: $\Delta P_{\text{bubble}} = P_{\text{inside}} - P_{\text{outside}} = 2 \frac{\sigma_s}{R}$

Spherical soap bubble: $\Delta P_{\text{bubble}} = P_{\text{inside}} - P_{\text{outside}} = 4 \frac{\sigma_s}{R}$


TMFM: Surface Tension: It's a Bit of a Stretch!

Contact Angle

- Contact angle ϕ is the angle between the tangents to the liquid and solid surfaces at the point of contact.
 - o For a *wetting fluid* ϕ < 90° and capillary liquid rises
 - o For a *nonwetting fluid* $\phi > 90^{\circ}$ and capillary liquid falls

- . Capillary rise height = h
- · Water in a glass tube Pure water: \$20°

Top water: \$ = 10-20

See my short YouTube video called "Calculation of Capillary Rise in a Tube" for capillary rise height calculation. https://youtu.be/x195xKWobhg

From the video:

Capillary rise height: $h = \frac{2\sigma_s}{cos\phi}$

Contact angle and surface tension Contact (or wetting) angle ϕ is the angle between the tangents to the liquid and solid surfaces at the point of contact of For a wetting fluid ϕ '90° and capillary liquid rises or For a nonwetting fluid ϕ '> 90° and capillary liquid falls 2:56

Calculation of Capillary Rise in a Tube

The table to the right lists surface tension of some common liquid surfaces exposed to air.

Example: Capillary Rise in a Tube

Given: A tube of radius 1.2 mm is inserted through the surface of pure water at 20°C and one atmosphere.

To do: Calculate the capillary rise height of this water in the tube.

Solution: Table:
$$6_3 = 0.073 \text{ m}$$

Should be $R \longrightarrow \chi = 0.0012 \text{ m}$

Contact angle \longrightarrow assume top water $9 \stackrel{?}{\approx} 10^{\circ}$
 $\stackrel{?}{\approx} 20^{\circ} c$ look up $p = 998.0 \frac{kg}{m^2}$

Surface tension of some fluids in air at 1 atm and 20°C (unless otherwise stated)

	Surface Tension
Fluid	$\sigma_{\rm s}$, N/m*
†Water:	
0°C	0.076
20°C	0.073
100°C	0.059
300°C	0.014
Glycerin	0.063
SAE 30 oil	0.035
Mercury	0.440
Ethyl alcohol	0.023
Blood, 37°C	0.058
Gasoline	0.022
Ammonia	0.021
Soap solution	0.025
Kerosene	0.028

Equation for capillary rise height: $h = \frac{2\sigma_s}{\rho gR} \cos \phi$

$$h = \frac{Z(0.073)(9.807)}{(9.807)(9.807)(0.0012)} \cos((0)) \left(\frac{10}{100}\right) = 0.0122 \text{ m}$$

$$h = 1.2 \text{ cm}$$

See my short YouTube video called "Why Do Coffee Rings Form?" for another interesting

and ubiquitous consequence of surface tension.

https://youtu.be/gwzHnNqBfAw

TMFM: Why Do Coffee Rings Form?