INTRODUCTION TO PRESSURE

In this lesson, we will:

- Define **pressure** and discuss three types of pressure measurement **absolute pressure**, **gage pressure**, and **vacuum pressure**
- Discuss equivalent column height or head and its usage
- Do some example problems

Pressure Principles

- Pressure is a *scalar* and is defined at a *point* in a fluid.
- Pressure is a *normal stress* with dimensions of force per unit area.
- Common units of pressure are atmospheres (atm), pascals (Pa), kilopascals (kPa), bar (bar), and pound-force per square inch (psi).

Absolute Pressure

- Always use *absolute pressure*, P or P_{abs} , in equations where P stands alone as, for example, in the ideal gas law, $P = \rho RT$.
- When analyzing a *change* in pressure, however, either absolute or relative pressure can be used, provide that the units are consistent. $\Delta P = P_2 P_3$

Gage (or gauge) pressure

• Gage pressure, P_{gage} , is the value of pressure above local atmospheric pressure, $P_{\text{gage}} = P_{\text{abs}} - P_{\text{atm}}$.

Example: Gage Pressure

Given: Jared measures the air pressure in his car tire with a tire pressure guage. The reading is 241.3 kPa. The local atmospheric pressure is 99.62 kPa.

To do: Calculate the absolute pressure inside the tire and give answers in kPa, atm, bar, and psi.

Solution:

$$P_{abs} = P_{atm} + P_{gage} = (99.62 + 241.3) kP_{a} = 340.92 kP_{abs} = 340.9 kP_{a}$$

$$P_{abs} = (340.92 kP_{a}) \left(\frac{1.4m}{101.325 kP_{a}} \right) = 3.365 atm$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

$$Close = (340.92 kP_{a}) \left(\frac{1.4ar}{100 kP_{a}} \right) = 3.409 bar$$

Vacuum Pressure

Vacuum pressure, Pvac, is the value of pressure below local atmospheric pressure,

 $P_{\text{vac}} = P_{\text{atm}} - P_{\text{abs}}$. Note: $P_{\text{vac}} = -P_{\text{gye}}$

 P_{vac} is a **positive** value, used only when $P < P_{\text{atm}}$ (absolute pressure < local atmospheric e, in a vacuum chamber.

Use Prac only when Prac > 0 *

Not proper to use a negative vacuum pressure pressure) as, for example, in a vacuum chamber.

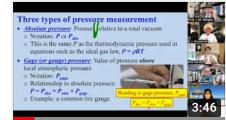
Example: Vacuum Pressure

Given: Elizabeth measures the air pressure in a vaccum chamber using a vaceum pressure guage. The reading is 98.27 kPa. The local atmospheric pressure is 99.62 kPa.

To do: Calculate the gage pressure inside the hamber. Also calculate the absolute pressure inside the charaber and give answers in kPa, atm, bar, and mbar.

Image from sanatron.com

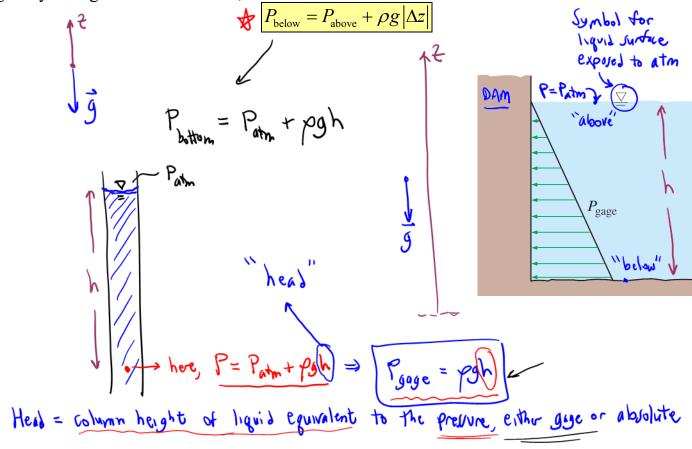
Convagining:
$$P_{abs} = (1.35 \text{ kPa}) \left(\frac{1 \text{ atm}}{100 \text{ kPa}} \right) = [0.0135 \text{ bar}] \times \left(\frac{1000 \text{ mbar}}{1000 \text{ mbar}} \right)$$


$$= [3.5 \text{ mbor}]$$

See my short YouTube video called "Principal Principles about Pressure" for more about

the fundamentals of pressure measurement and terminology. https://youtu.be/e4lM-rfYWRM

From the video:


- Pressure acts inwardly normal on any object, real or imaginary.
- One standard atmosphere is equivalent to 760 mm of mercury column height (head).

Principal Principles About Pressure

Equivalent Column Height (Head)

In the next lesson, we derive the hydrostatic pressure relation for incompressible liquids with gravity acting in the -z direction,

Example: Pressure Expressed as a Head

Given: The first example problem above.

To do: Express the absolute pressure as an equivalent column height of mercury and of water at 20°C for the first example problem above.

Solution:

(2 70°C,
$$P_{Hg} = 13,600 \text{ by/m}^3$$

$$h_{Hz0} = equiv. \text{ column height of water } \Rightarrow P_{abs} = pgh$$

$$h_{Hz0} = \frac{P_{abs}}{P_{Hz0}g} = \frac{340.92 \text{ kPa}}{998.0 \text{ mz}} (9.807 \text{ mz}) (9.807$$