TRANSLATION, ROTATION, AND VORTICITY

In this lesson, we will:

- Discuss the fundamental types of fluid element motion or deformation
- Define vorticity and how it is related to rotationality
- Do some example problems

The Four Fundamental Types of Fluid Element Motion or Deformation

SHEAR STRAIN (Fluid element shears)

In fluid mechanics, we prefer to use rates of motion or deformation

Rate of Translation
$$= \overrightarrow{V} = \overrightarrow{dx}_{particle} + \overrightarrow{dy}_{partial} + \overrightarrow{dx}_{particle} + \overrightarrow{$$

Rate of Rotation

(d)

In Cartesian coordinates, the rate of rotation of a fluid element is

$$\vec{\omega} = \frac{1}{2} \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right) \vec{i} + \frac{1}{2} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right) \vec{j} + \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \vec{k} = \text{angular velocity vector}$$

Vorticity

The vorticity vector is defined as the curl of the velocity vector, using the right-hand rule.

Greek letter zeta $\vec{\zeta} = \vec{\nabla} \times \vec{V}$

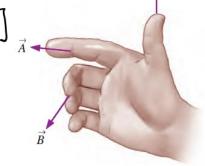
It turns out that vorticity is equal to twice the angular velocity of a fluid particle,

 $\vec{\zeta} = 2\vec{\omega} \qquad \left\{ \vec{S} \vec{\zeta} = \vec{\zeta} \vec{J} \right\} \qquad \left[\vec{J} \vec{J} = \vec{\zeta} \vec{J} \right]$

Thus, vorticity is a measure of rotation of a fluid particle.

Some authors We is for Vorticity

if $\vec{\zeta} = 0$, the flow is irrotational if $\vec{\zeta} \neq 0$, the flow is rotational



 $\vec{C} = \vec{A} \times \vec{B}$

The vorticity vector in Cartesian coordinates:

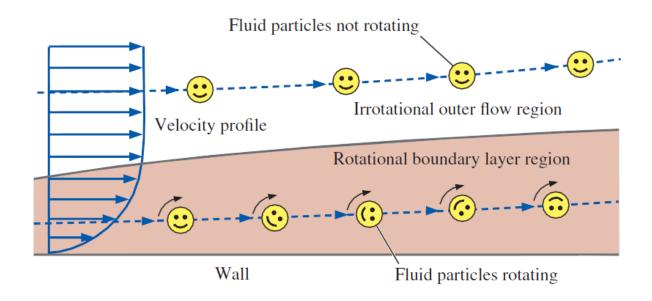
$$\vec{\zeta} = \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z}\right)\vec{i} + \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}\right)\vec{j} + \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right)\vec{k}$$

The vorticity vector in cylindrical coordinates: (5,9,2) (4,50,01)

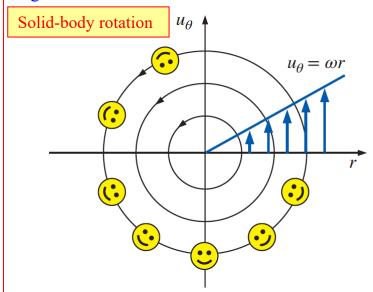
$$|\vec{\zeta}| = \left(\frac{1}{r}\frac{\partial u_z}{\partial \theta} - \frac{\partial u_\theta}{\partial z}\right)\vec{e}_r + \left(\frac{\partial u_r}{\partial z} - \frac{\partial u_z}{\partial r}\right)\vec{e}_\theta + \frac{1}{r}\left(\frac{\partial \left(ru_\theta\right)}{\partial r} - \frac{\partial u_r}{\partial \theta}\right)\vec{e}_z$$

Examples:

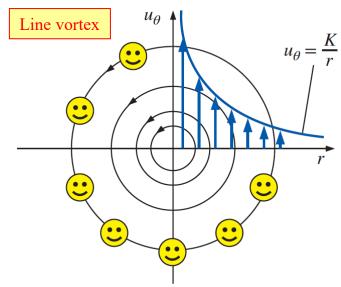
1. Inside a **boundary layer**, where viscous forces are important, the flow in this region is *rotational* ($\vec{\zeta} \neq 0$). However, outside the boundary layer, where viscous forces are not important, the flow in this region is *irrotational* ($\vec{\zeta} = 0$).



2. Flow in **solid-body rotation** (rigid-body rotation) is **rotational** ($\vec{\zeta} \neq 0$). In fact, since vorticity is equal to twice the angular velocity, $\vec{\zeta} = 2\vec{\omega}$ **everywhere** in the flow field. Fluid particles rotate as they revolve around the center of the flow. This is analogous to a merrygo-round or a roundabout.



3. A **line vortex** flow, however, is **irrotational** ($\vec{\zeta} = 0$), and fluid particles do not rotate, even though they revolve around the center of the flow. This is analogous to a Ferris wheel.



Demo by Duck Dynamics and Dick Dynamics

Visual aids created by former students Caitlin Hensley and Morgan Austin.

Example: Vorticity and irrotationality

Given: A two-dimensional velocity field in the x-y plane: $\vec{V} = (u,v) = 2xy\vec{i} - y^2\vec{j}$. (w = 0)To do: Is this flow rotational or irrotational? (Study)

Solution:

The rate of rotation is

The rate of rotation is
$$\vec{\omega} = \frac{1}{2} \left(\frac{\partial w}{\partial y} - \frac{\partial y}{\partial z} \right) \vec{i} + \frac{1}{2} \left(\frac{\partial y}{\partial z} - \frac{\partial w}{\partial k} \right) \vec{j} + \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \vec{k} \text{ and vorticity} = \vec{\zeta} = 2\vec{\omega}.$$

$$(2-0) \quad (2-0) \quad (2-0)$$

$$\omega = -xk$$

$$3 = -2xk$$

Since \$ 70, THU PLOW IS ROTATIONAL

Example: Vorticity and irrotationality

Given: A two-dimensional velocity field in the x-y plane: $\vec{V} = (u, v) = 3x\vec{i} - 3y\vec{j}$. (w = 0)

To do: Calculate (a) the rate of translation and (b) the rate of rotation.

Solution:

(a) The rate of translation is simply the velocity vector,

$$\vec{V} = u\vec{i} + v\vec{j} + w\vec{k}$$

$$\overrightarrow{V} = 3x\overrightarrow{i} - 3y\overrightarrow{j} \Rightarrow \text{or} \qquad (x = 3x)$$

$$V = -3y$$

(b) The rate of rotation is

$$\vec{\omega} = \frac{1}{2} \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right) \vec{i} + \frac{1}{2} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right) \vec{j} + \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \vec{k} \text{ and vorticity} = \vec{\zeta} = 2\vec{\omega}.$$

(2-0)
$$(z-0)$$
 $(z-0)$ $(z-0)$

's,
$$\overline{3} = 0$$

THIS FLOW IS IRROTATIONAL