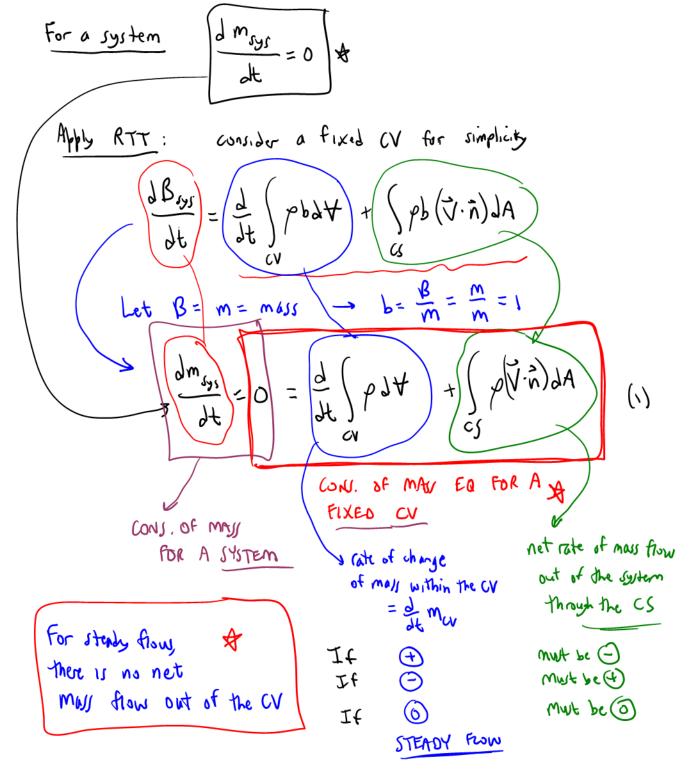
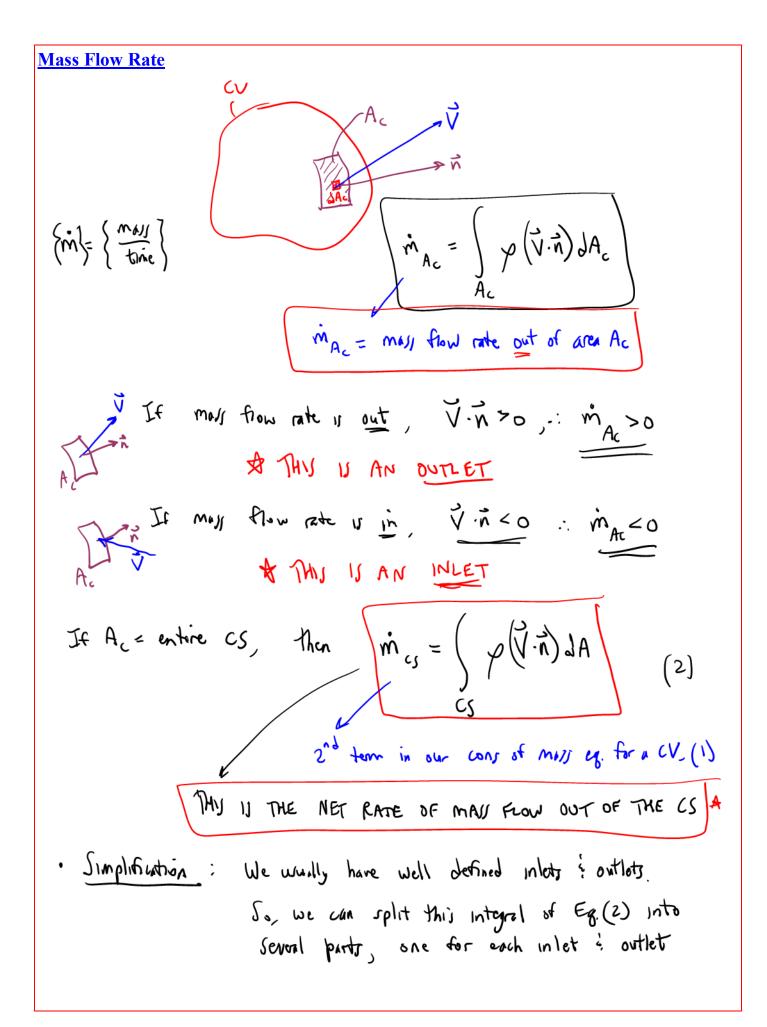
CONSERVATION OF MASS

In this lesson, we will:

- Use the Reynolds Transport Theorem to generate the **equation of conservation of mass for a control volume** and show some simplifications of this equation
- Discuss mass flow rate and volume flow rate
- Do some example problems

Derivation of Conservation of Mass from the RTT





$$E_{ij}(i) \quad becomes for the constant of the$$

Volume Flow Rate
Volume Flow Rate

$$\dot{\Psi}_{A_{c}} = \int (\ddot{\Psi} \cdot \ddot{n}) dA_{c} = volume flow rate
out of area A_{c}
Notation: $\Psi = volume$, $\dot{\Psi} = volume flow rate
 $\int m = may$ $\dot{m} = may$ flow rate]
some other authory use Q for volume flow rate
Average velocity (actually speed) through A_{c}
 $V_{avg, A_{c}} = \frac{1}{A_{c}} \int (\ddot{\Psi} \cdot \ddot{n}) dA_{c}$
 $\dot{\Psi}_{A_{c}}$
 $V_{avg, A_{c}} = \frac{1}{A_{c}} \int (\ddot{\Psi} \cdot \ddot{n}) dA_{c}$
 $\dot{\Psi}_{A_{c}}$
 $\dot{\Psi}_{A_{c}} = \frac{1}{A_{c}} \int (\dot{\Psi} \cdot \ddot{n}) dA_{c}$
 $\dot{\Psi}_{A_{c}}$
 $\dot{\Psi}_{A_{c}} = \frac{1}{A_{c}} \int \dot{\Psi}_{A_{c}}$
 $\dot{\Psi}_{A_{c}} = \dot{\Psi}_{A_{c}}$
 $\dot{\Psi}_{A_{c}} = \dot{\Psi}_{A_{c}}$
 $\dot{\Psi}_{A_{c}} = \dot{\Psi}_{A_{c}}$$$$

Example: Unsteady conservation of mass (flow into a tank) Given: Air is pumped into a rigid tank of volume V. The mass flow rate of the air entering the tank is constant, \dot{m}_{in} . We assume that the process is slow enough that the air in the tank remains at the same temperature (isothermal conditions).

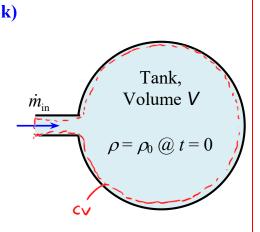
To do: Generate an equation for density ρ in the tank as a function of time.

Solution:

* Draw an appropriate C.V. \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} • Cons. of mally eq. $d\mathbf{y}$ $pd\mathbf{y} = \sum_{n} \mathbf{m} - \sum_{n} \mathbf{m}$ $d\mathbf{y}$ $pd\mathbf{y} = \sum_{n} \mathbf{m} - \sum_{n} \mathbf{m}$ \mathbf{y} • Assume p = p(t) only $d\mathbf{y}$ $\int_{\mathbf{x}} d\mathbf{y}$ $= \mathbf{m}_{n}$ \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y}

$$\varphi = \frac{\dot{m}_{in}}{V} = constant$$

Integrate from t=0 where $p=p_0$ to some later time t $\int_{p_0}^{p} dp = \frac{\dot{m}_{1n}}{V} \int_{t=0}^{t} dt$ $p = p_0 + \frac{\dot{m}_{1n}}{V} t$ $p = p_0 + \frac{\dot{m}_{1n}}{V} t$



Example: Velocity profiles in 2-D channel flow

Given: Consider steady, incompressible, two-dimensional flow of a liquid between two very long parallel plates as sketched. At the inlet (1) there is a nice bell mouth, and the velocity is nearly uniform (except for a very thin, negligible boundary layer, not shown).

- At (1), $u = u_1 = \text{constant} = 3.00 \text{ m/s}$, v = 0, and w = 0.
- At (2), the flow is fully developed, and u = ay(h y), v = 0, and w = 0, where a is a constant and h = 12.5 cm.

