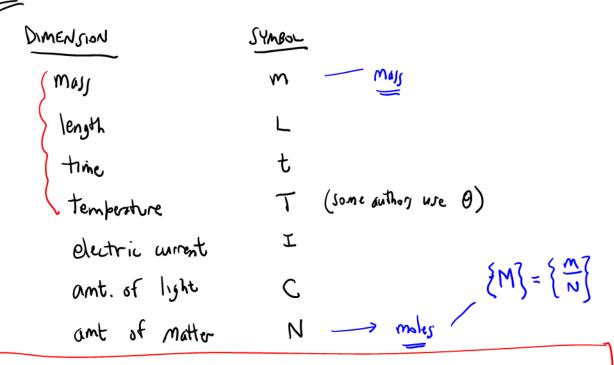
DIMENSIONAL ANALYSIS INTRODUCTION

In this lesson, we will:

- Define the **seven primary dimensions** and discuss how to convert any other dimension in terms of primary dimensions
- Reinforce the concept of dimensional homogeneity of equations
- Define dimensionless parameters and how to analyze them
- Do some example problems

The Seven Primary Dimensions



ALL OTHER DIMENSIONS CAN BE FORMED BY COMBINATION OF THESE PRIMARY DIMENSIONS

Example: Primary dimensions – shear stress, force per unit length, and power

(a) Given: In fluid mechanics, shear stress τ is expressed in units of N/m².

To do: Express the primary dimensions of τ , i.e., write an expression for $\{\tau\}$.

Solution:

(b) Given: We are conducting an experiment in which quantity a has dimensions of force per unit length.

To do: Express the primary dimensions of a, i.e., write an expression for $\{a\}$.

Solution:

$$\left\{\alpha\right\} = \left\{\frac{F}{L}\right\} = \left\{\frac{ML/t^2}{L}\right\} = \left\{\frac{M}{t^2}\right\}$$

$$\left\{\alpha\right\} = \left\{\frac{M}{t^2}\right\} = \left\{\frac{M}{t^2}\right\} = \left\{\frac{M}{t^2}\right\}$$

(c) Given: Power \dot{W} has the dimensions of energy per unit time.

To do: Write the dimensions of power in terms of primary dimensions.

Solution:

Energy = force x dylance
Power = energy/time = rate of energy
$$\begin{cases}
\vec{W} \\
\vec{W}
\end{cases} = \begin{cases}
\frac{F \cdot L}{t} \\
 = \begin{cases}
\frac{ML}{t^2} \\
 = \begin{cases}
\frac{ML^2}{t^3}
\end{cases} = \begin{cases}
\frac{ML^2}{t^3}
\end{cases} = \begin{cases}
\frac{ML^2}{t^3}
\end{cases}$$

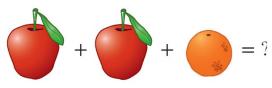
Dimensional	l Homogeneity
Difficustoffa	<u> </u>

ALL ADDITIVE TERMS IN AN EQUATION MUST HAVE THE SAME DIMENSIONS

E.g., our workhorse linear momentum eg. for a fixed CV

E.a., our workhorse eq. for angular momentum, fixed CV

If these dimensions were NoT the same, you have an error somewhere

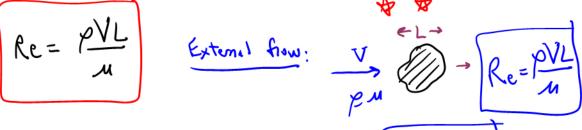


Dimensionless Parameters

Use II as the symbol for a dimensionly parameter not M

e.g., Mach number =
$$Ma = \frac{V}{C} \rightarrow \{Ma\} = \{1\}$$

· Another Webl II IS Reynolds number, Re



Internal flow: V PM D & Re= PVD

Verby that Re is a TT:

Example: Dimensionless Parameters

Given: We have three available variables: a, b, and c. Here are their dimensions:

$${a} = {L \choose t}$$
 ${b} = {L^3 \choose m}$ ${c} = {m \choose t^2 L}$

We need to construct a dimensionless parameter using only these three variables and with variables b and c in the denominator. We construct our Π as follows,

