
PIPE FLOW INTRODUCTION

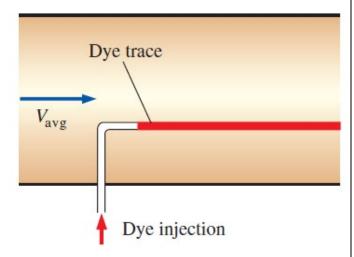
In this lesson, we will:

- Briefly review Average Speed and Mass Conservation for pipe flow
- Discuss differences between Laminar and Turbulent pipe flow and define Critical Re
- Define **Hydraulic Diameter** and discuss its application
- Do some example problems

Review: Average Speed and Conservation of Mass

Recall the definition and usefulness of average speed in a pipe:

Laminar vs. Turbulent Flow


Laminar Flow

Can be steady or unsteady.

(Steady means that the flow field at any instant in time is the same as at any other instant in time.)

Can be one-, two-, or three-dimensional.

Has regular, *predictable* behavior

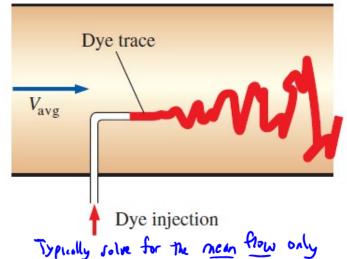
Analytical solutions are possible (see Chapter 9).

Occurs at low Reynolds numbers.

Turbulent Flow

Is always unsteady.

Why? There are always random, swirling motions (vortices or eddies) in a turbulent flow.

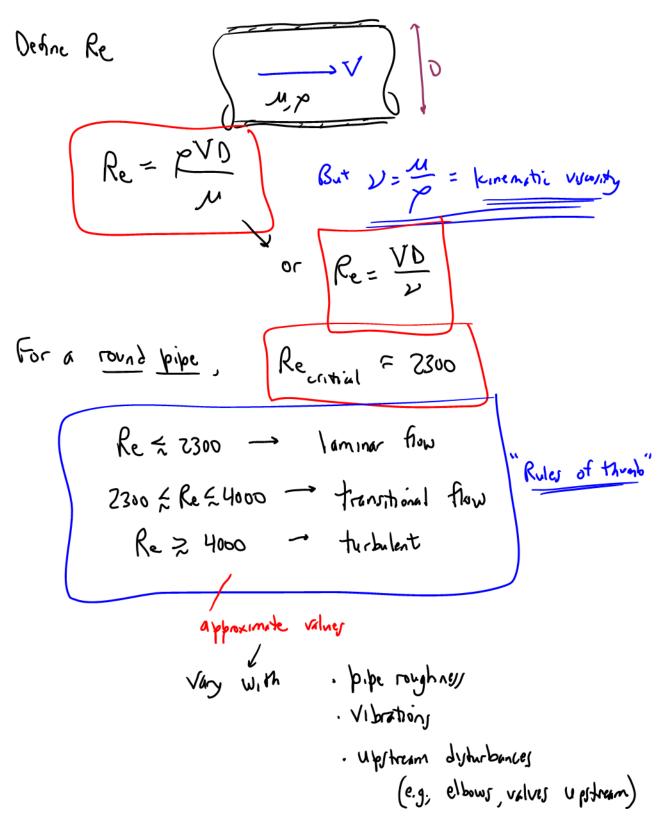

Note: However, a turbulent flow can be steady in the mean. We call this a stationary turbulent flow.

Is always three-dimensional.

Why? Again because of the random swirling eddies, which are in all directions.

Note: However, a turbulent flow can be 1-D or 2-D *in the mean*.

Has irregular or *chaotic* behavior (cannot predict exactly – there is some randomness associated with any turbulent flow.


No analytical solutions exist! (It is too complicated, again because of the 3-D, unsteady, chaotic swirling eddies.)

Occurs at high Reynolds numbers.

Critical Reynolds Number

At what Reynolds number does pipe flow transition from laminar to turbulent?

Hydraulic Diameter For non-round piper define Mydraulic Diameter $D_h = \frac{4 \text{ Ac}}{b}$ where Ac = actual crop-sectional area of the pipe or duct : b = wetted perineter (portion of the perimeter in contact with the fivil) EU, OPEN CHANNEL $A_c = (1 m) \times (2m)$ b = 1m + 2m + 1m = 4m $0 = \frac{4A_c}{b} = \frac{4(zm^2)}{4m}$ Dh = 2 m/4 WHAT DOES THY MEAN? $f=f(Re, 86) \rightarrow correlations$ are bycl on round pipe I Equivalent to flow through a round pipe of diameter Dh

CAUTION WHEN CALCULATING in (or \forall)

We the real cross-sectional area A_c not the circular cross-sectional area $\frac{TTQ_c^2}{4}$

·
$$\dot{m} = \rho VA \rightarrow we A_c$$
 : the actual V

where $V = \frac{\dot{m}}{\rho A_c}$

When calculating Re to find f, we D_h is actual V not V for the quivalent circular pipe $Re = \frac{pVD_h}{M}$

In above example, suppose $\dot{y} = 10 \frac{m^3}{5}$. We his $A_c = 2 m^2$ $\dot{y} = \frac{\dot{y}}{A_c} = \frac{10 m^3 f}{2 m^2} = \frac{5 m}{5 m}$

Use this value in Re

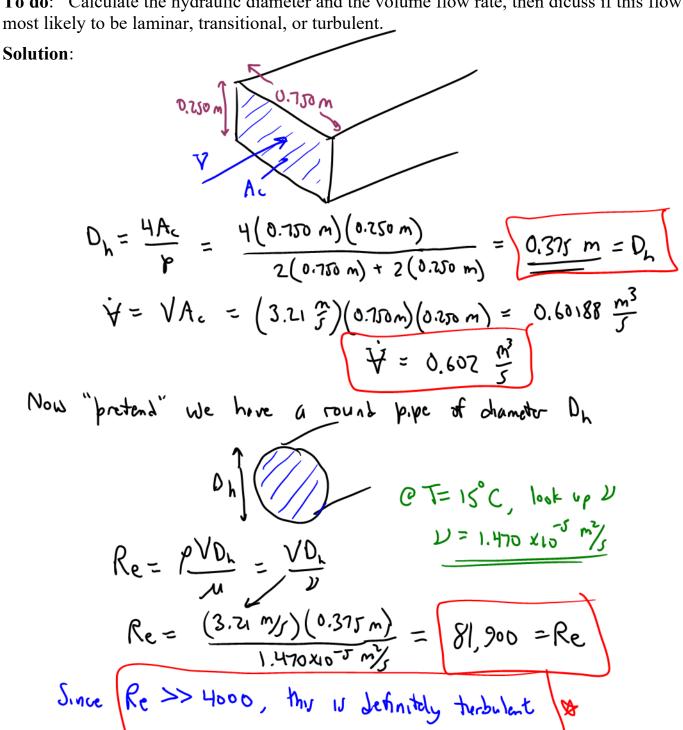
"Equivalent" round pipe

$$V = \frac{\dot{V}}{A_{rwyl}} = \frac{\dot{V}}{\pi 0_{h}^{2}/y} = \frac{3.183 \%}{3.183 \%} \times$$

A DO NOT WE THY IN Re

Bottom Line: . Use Dh : actual V to calc. Re

. Then we that he to calculate f


· Use actual Ac & actual V for calculation of m

Example: Hydraulic Diameter and Critical Reynolds Number

Given: Air flows through a rectangular air conditioning duct at T = 15.0°C. The following values are measured:

- Duct width = 0.750 m
- Duct height = 0.250 m
- Average air speed through the duct = 3.21 m/s

To do: Calculate the hydraulic diameter and the volume flow rate, then dicuss if this flow is

