PIPE FLOW ENTRANCE REGION

In this lesson, we will:

- Define Hydrodynamic Entrance Length and discuss empirical equations for it
- Do an example problem

Entrance Region

Example: Hydrodynamic entrance length

Given: Shear stress along the inner pipe wall τ_w is a function of $(\rho, \mu, D, V, \varepsilon, x)$, where we typically drop the "avg" subscript (let $V = V_{avg}$).

To do: Use Dimensional analysis to generate the relationship. Solution: $N=6, j=3, \rightarrow k=3T_{s}$

Recall, for fully developed pipe flow,
$$\mathcal{T}_{N} = \operatorname{fnc}\left(\mathcal{P}, \mathcal{A}, \mathcal{O}, \mathcal{V}, \mathcal{E}\right)$$

i we got $f = \frac{8\mathcal{T}_{W}}{\mathcal{P}^{2}} = \operatorname{fnc}\left(\operatorname{Re}, \frac{\mathcal{E}}{\mathcal{D}}\right)$
Here, whe have $\mathcal{T}_{W} = \operatorname{fnc}\left(\mathcal{P}, \mathcal{A}, \mathcal{O}, \mathcal{V}, \mathcal{E}, \mathcal{X}\right)$ $n=7, j=3, k=4\pi_{s}$
Since $\{\chi\} = \{L\} \rightarrow sime a_{s}\{\mathcal{E}\} = \{L\}$
 \therefore For entrince region, $f = \frac{8\mathcal{T}_{W}}{\mathcal{P}^{2}} = \operatorname{fnc}\left(\operatorname{Re}, \frac{\mathcal{E}}{\mathcal{D}}, \frac{\chi}{\mathcal{O}}\right)$

Example: Hydrodynamic entrance length
Given: Hydrodynamic entrance length
$$L_{h}$$
 is a function of $(\rho, \mu, D, V, \varepsilon)$.
To do: Use Dimensional analysis to generate the relationship.
Solution:
Get $\frac{L_{h}}{D} = f_{hc} \left(Re, \frac{\varepsilon}{D}\right)$ where $Re = \frac{DVD}{M} = \frac{VD}{M}$
In practice, ε has little effect on L_{h}
LATMIN AR ARE flow:
 $\frac{L}{D} \approx 0.050 \text{ Re}$ "cuty of thumbs
TURQUEART PLPE flow:
 $\frac{L_{h}}{D} \approx 1.353 \text{ Re}^{\frac{1}{4}}$ to
 $\frac{L}{D} \approx 1.353 \text{ Re}^{\frac{1}{4}}$ to
 $\frac{L}{D} \approx 1.353 \text{ Re}^{\frac{1}{4}}$ to
 $\frac{L}{D} \approx 1.353 \text{ Re}^{\frac{1}{4}}$ to
 $\frac{L}{L} \approx 1.353 \text{ R}^{\frac{1}{4}}$ to
 $\frac{L}{L} \approx$