PIPE FLOW ENTRANCE REGION
In this lesson, we will:

- Define Hydrodynamic Entrance Length and discuss empirical equations for it
- Do an example problem

Entrance Region

From Çengel and Cimbala, Ed. 4.

- $\tau_{\omega} \downarrow$ as $x \uparrow$ in the entrance region (developing region)

$$
\text { - } V=V_{a v g}=\text { anstant } \cdots L_{h}=\begin{aligned}
& L_{y y} d_{0} d_{y n} \text { osmic entrance } \\
& \text { length }
\end{aligned}
$$

Example: Hydrodynamic entrance length
Given: \quad Shear stress along the inner pipe wall τ_{w} is a function of $(\rho, \mu, D, V, \varepsilon, x)$, where we typically drop the "avg" subscript (let $V=V_{\text {avg }}$).
To do: Use Dimensional analysis to generate the relationship.
Solution:

$$
n=6, j=3, \frac{k=3 I_{s}}{1}
$$

Recall, for fully developed pipe frow, $\tau_{\omega}=f_{n c}(\rho, \mu, 0, V, \varepsilon)$

$$
\text { i we got } f=\frac{8 \tau_{\omega}}{\rho V^{2}}=f_{n c}\left(R_{e}, \frac{\varepsilon}{\Delta}\right)
$$

Here, we have $\tau_{\omega}=f_{n c}(\rho \mu, D, V, \varepsilon, x) \quad n=7, j=3, k=4 \pi \pi_{s}$
Since $\{x\}=\{L\} \rightarrow$ same as $\{\varepsilon\}=\{L\}$
\therefore For entrance region, $f=\frac{\delta \tau_{w}}{\rho v^{2}}=\operatorname{fnc}\left(\operatorname{Re}, \frac{\varepsilon}{D}, \frac{x}{D} \phi\right.$

Example: Hydrodynamic entrance length
Given: Hydrodynamic entrance length L_{h} is a function of $(\rho, \mu, D, V, \varepsilon)$.
To do: Use Dimensional analysis to generate the relationship.
Solution:
Get $\frac{L_{h}}{D}=f_{n c}\left(\operatorname{Re}, \frac{\varepsilon}{D}\right)$ क where $R_{e}=\frac{\rho V D}{\mu}=\frac{V D}{\nu}$
In practice, ε has little effect on L_{h}
LAminar PiPE flow: $\frac{L_{h}}{D} \approx 0.050 \operatorname{Re}$ \& "rules of thumb"
TURBULENT PIPE FLOW:

Example: Hydrodynamic entrance length
Given: Water with $v=1.00 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ flows at a steady average speed of $5.70 \mathrm{~m} / \mathrm{s}$ through a long pipe of diameter 25.4 cm . The pipe is 1.80 km long.

To do: What percent of the pipe length can be considered to be fully developed?
Solution:

$$
\begin{aligned}
& R_{e}=\frac{V D}{\nu}=\frac{\left(5.70 \frac{\mathrm{~m}}{\mathrm{~s}}\right)(0.254 \mathrm{~m})}{1.00 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}}=1.4478 \times 10^{6} \gg 4000 \\
& L_{h}=1.359 R_{e}^{1 / 4} D=\underbrace{1.359\left(1.4478 \times 10^{6}\right)^{\frac{1}{4}}}_{47.141} \begin{array}{l}
\text { DEFINITELY } \begin{array}{l}
\text { TRRULENT }
\end{array} \\
(0.254 \mathrm{~m})=\begin{array}{l}
11.973 \mathrm{~m} \\
=L_{h}
\end{array}
\end{array}
\end{aligned}
$$

$$
\% \text { Lully developer }=\frac{L-L_{h}}{L} \times 100 \%=\frac{1800 \mathrm{~m}-11.973 \mathrm{~m}}{1800 \mathrm{~m}} \times 100 \%
$$

$$
=99.335 \%
$$

Ans $\approx 99.3 \%$ of the pipe is fully developed

- For very long, straight pipes, entrance length is neglygble
- Later, we will learn how to estimate the addinimal had las due to entrance effects

