PUMP SCALING LAWS

In this lesson, we will:

- Review Dimensional Analysis by applying it to Pump Performance Curves
- Discuss the **Pump Affinity Laws** and how to apply them to design pumps
- Do an example problem

Dimensional Analysis of Pump Performance Parameters

Start with the functional relationship, and perform the method of repeating variables:

gH) saur
$$gH = f(V, D, \varepsilon, \omega, \rho, \mu)$$
 ω in ralls $\{\omega\} = \{\frac{1}{t}\}$ $\{\omega\} = \{\frac{1}{t}\}$ $\{\omega\} = \{\frac{1}{t}\}$

Try it yourself – great review of dimensional analysis and the method of repeating variables:

$$\frac{gH}{\omega^2 D^2} = \text{function of}\left(\frac{\dot{V}}{\omega D^3}, \frac{\rho \omega D^2}{\mu}, \frac{\varepsilon}{D}\right)$$

A similar analysis with input brake horsepower (*bhp*) as a function of the same variables results in

$$\frac{bhp}{\rho\omega^3 D^5} = \text{function of}\left(\frac{\dot{V}}{\omega D^3}, \frac{\rho\omega D^2}{\mu}, \frac{\varepsilon}{D}\right)$$

$$\left(\frac{\partial V}{\partial D} = \alpha \text{ speed}\right)$$

$$\left(\frac{\partial V}{\partial D} = \frac{\rho\omega D}{\lambda}\right)$$

Let's name these Π 's:

$$C_{H} = \frac{gH}{\omega^{2}D^{2}} = \text{head coefficient}$$

$$Re = \frac{\rho\omega D^{2}}{\mu} = \text{Reynolds number}$$

$$C_{Q} = \frac{\dot{V}}{\omega D^{3}} = \text{capacity coefficient}$$

$$C_{Q} = \frac{bhp}{\rho\omega^{3}D^{5}} = \text{power coefficient}$$

$$C_{Q} = \frac{\dot{V}}{\omega D^{3}} = \text{capacity coefficient}$$

$$C_{Q} = \frac{\dot{V}}{\omega D^{3}} = \text{capacity coefficient}$$

$$C_{Q} = \frac{\dot{V}}{\omega D^{3}} = \text{capacity coefficient}$$

So, we write

$$C_H = \text{function}(C_Q, \text{Re}, \varepsilon/D)$$
 and $C_P = \text{function}(C_Q, \text{Re}, \varepsilon/D)$

But for many pumps, effects of Re and roughness are small at high Re, and thus,

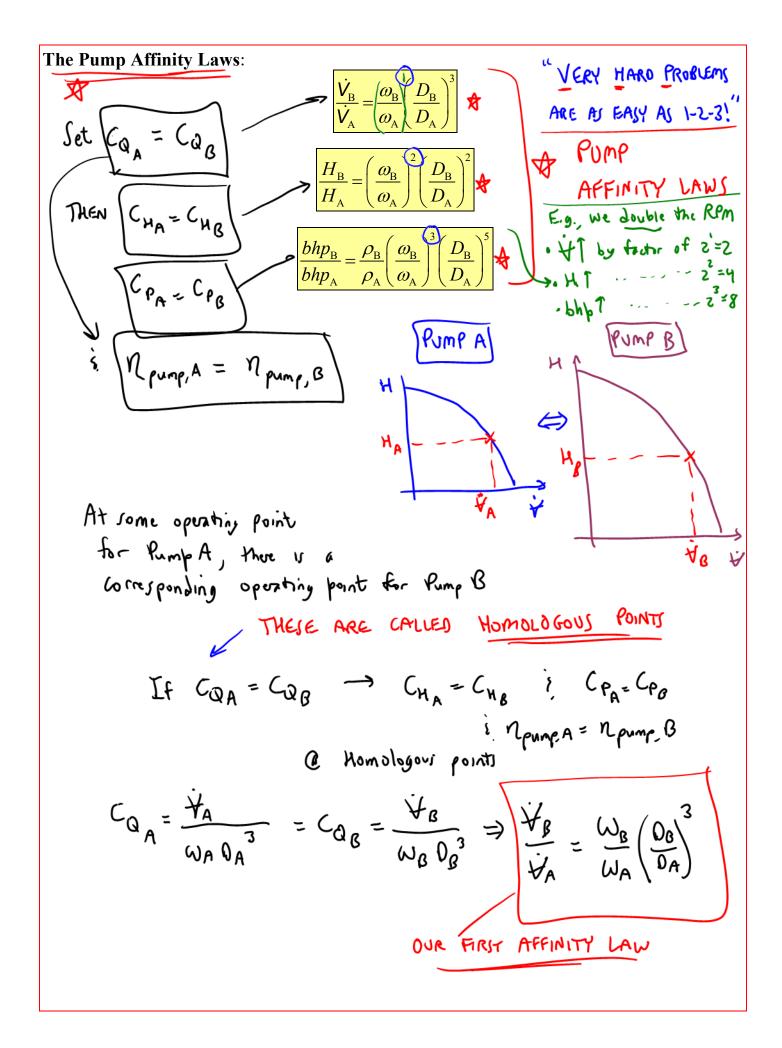
$$C_H \approx \text{function}(C_Q)$$
 and $C_P \approx \text{function}(C_Q)$

Finally, pump efficiency is already dimensionless, and we write η_{pump} as

$$\eta_{\text{pump}} = \frac{\rho(\dot{V})(gH)}{bhp} = \frac{\rho(\phi D^{3}C_{Q})(\phi^{2}D^{2}C_{H})}{\rho\phi^{3}D^{3}C_{P}} = \frac{C_{Q}C_{H}}{C_{P}} = \text{function}(C_{Q})$$

$$\uparrow \text{Pump} = \text{fnc}(C_{Q}) \text{ also } \Rightarrow$$

Pump Affinity Laws Definition of affinity: Inherent likeness or agreement. If two pumps are geometrically similar ? dynamically similar then their bump performance curves fall on top of each other when plotted nondimensionally PUMP B E.g., [PUMP A] H 12 pump DIMENSIONAL PLOTT OF H & bhb (Nount is usuginersiony) Re-draw there plots in nondimensional form CHA=CHB Noume, A=Npump, B ONE SET OF PUMP PERFORMANIE coa=cos CURVES APPLIES TO ALL SIMILAR PUMPS · Lynamically similar + Re & at small Re · geometrically similar



Example: Scaling up a pump using the affinity laws

Given: An existing pump (A): Fluid is water at 20°C, $D_A = 6.50$ cm, and $\dot{n}_A = 1500$ rpm. At BEP, $\dot{V}_A = 455$ cm³/s at $H_A = 1.44$ m. We are designing a new larger pump (B) that is geometrically similar with $D_B = 8.20$ cm. It still uses water at 20°C, but rotates at a higher rpm, $\dot{n}_B = 1750$ rpm.

To do: (a) Predict \dot{V}_B and H_B for operation of pump B at its BEP.

(b) Estimate the % increase in required brake horsepower from pump A to pump B.

Solution:

(a) At homologous points, the two turbines are dynamically similar. Apply the affinity laws:

$$\frac{\dot{V}_{B}}{\dot{V}_{A}} = \frac{\omega_{B}}{\omega_{A}} \left(\frac{D_{B}}{D_{A}} \right)^{3} \qquad \frac{H_{B}}{H_{A}} = \left(\frac{\omega_{B}}{\omega_{A}} \right)^{2} \left(\frac{D_{B}}{D_{A}} \right)^{2} \qquad \frac{bhp_{B}}{bhp_{A}} = \frac{\rho_{B}}{\rho_{A}} \left(\frac{\omega_{B}}{\omega_{A}} \right)^{3} \left(\frac{D_{B}}{D_{A}} \right)^{3}$$

$$\dot{V}_{B} = \dot{V}_{A} \left(\frac{\dot{M}_{B}}{\dot{M}_{A}} \right) \left(\frac{D_{B}}{D_{A}} \right)^{3} = \dot{V}_{A} \left(\frac{\dot{m}_{B}}{\dot{M}_{A}} \right) \left(\frac{D_{B}}{D_{A}} \right)^{3}$$

$$\dot{V}_{B} = \left(455 \frac{cm^{3}}{3} \right) \left(\frac{1730 \text{ cpm}}{1500 \text{ cpm}} \right) \left(\frac{8.20 \text{ cm}}{6.50 \text{ cm}} \right)^{3} = \frac{1065.76 \frac{cm^{3}}{3}}{1000 \frac{cm^{3}}{3}}$$

$$\dot{V}_{B} = 1000 \frac{cm^{3}}{3}$$

$$\dot{V}_{B} = 1000 \frac{cm^{3}}{3}$$

$$\dot{V}_{B} = 1000 \frac{cm^{3}}{3}$$

$$\dot{V}_{B} = \frac{\rho_{B}}{\dot{M}_{A}} \left(\frac{\dot{m}_{B}}{\dot{M}_{A}} \right)^{2} \left(\frac{D_{B}}{D_{A}} \right)^{3} - \frac{1065.76 \frac{cm^{3}}{3}}{1000 \frac{cm^{3}}{3}}$$

$$\dot{V}_{B} = 1000 \frac{cm^{3}}{3}$$

$$\dot{V}_{B} = 3.12 \text{ m}$$

$$\dot{V}_{B} = 3.12 \text{$$