MORE SOLUTIONS OF THE NAVIER-STOKES EQUATION

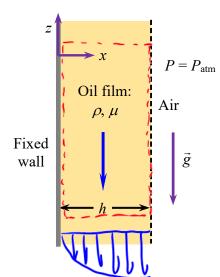
In this lesson, we will:

Do two more example problems that are exact solutions of the Navier-Stokes equation

Example in Cartesian Coordinates: Oil Film on a Vertical Wall

Given: Consider steady, incompressible, parallel, laminar flow of a film of oil falling slowly down an infinite vertical wall as sketched. The oil film thickness is h, and gravity acts in the negative z direction (downward in the figure). There is no applied (forced) pressure driving the flow – the oil falls by gravity alone.

To do: Calculate the velocity and pressure fields in the oil film and sketch the normalized velocity profile. You may neglect changes in the hydrostatic pressure of the surrounding air.



Solution: We apply our step-by-step procedure:

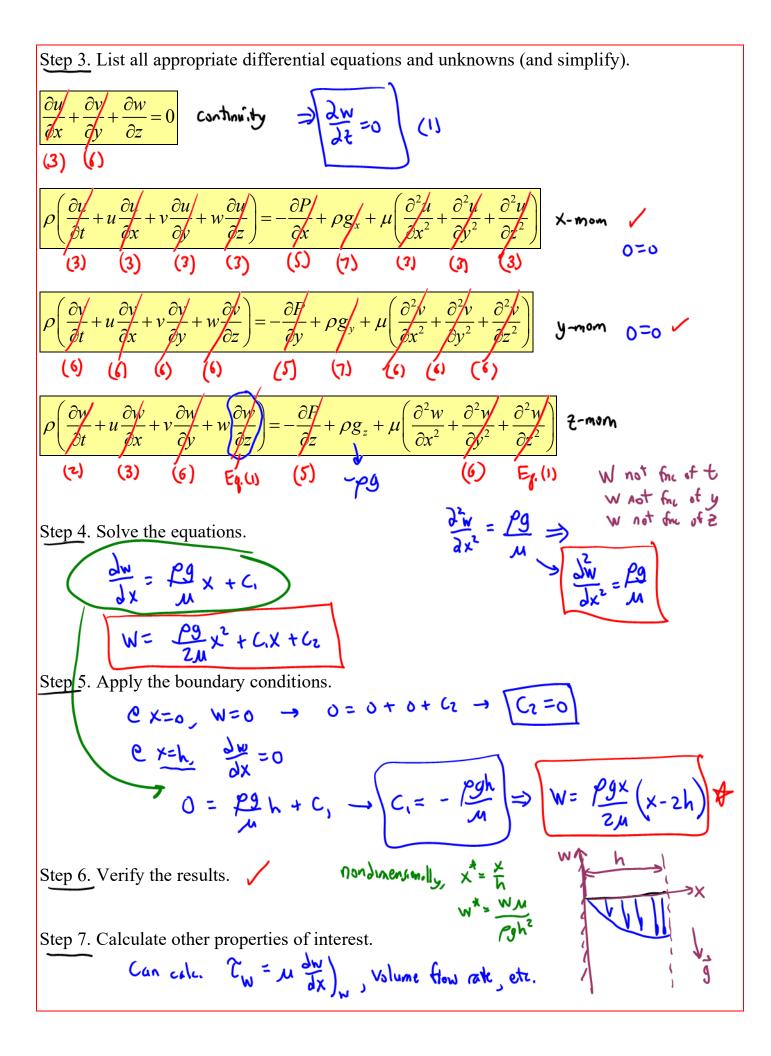
Step 1. Identify the flow geometry and flow domain.

Step 2. List assumptions, approximations, and boundary conditions.

Assumptions and Approximations:

- 1 The wall is infinite in the y-z plane (y is into the page for a right-handed coordinate Flow is fully developed
- 2 The flow is steady, so all partial derivatives with respect to time are zero. $\frac{1}{2}$
- 3 The flow is parallel (the x component of velocity, u, is zero everywhere).
- 4 The fluid is incompressible and Newtonian, and the flow is laminar.
- 5 Pressure $P = P_{\text{atm}} = \text{constant}$ at the free surface. In other words, there is no applied pressure gradient pushing the flow; the flow establishes itself due to a balance between gravitational forces and viscous forces. In addition, since there is no gravity force in the horizontal direction, $P = P_{\text{atm}}$ everywhere.
- 6 The velocity field is purely two-dimensional, which implies that v = 0 and all partial derivatives with respect to y are zero.
- 7 The components of gravity are $g_x = g_y = 0$ and $g_z = -g$.

enditions: @ well, no slip
$$\Rightarrow$$
 $u=V=w=0$ @ $\chi=0$ @ $\chi=h$ of the surface $\Rightarrow \frac{\partial w}{\partial x}=0$ @ $\chi=h$ Into face w / $M_{oil} >> M_{oir}$



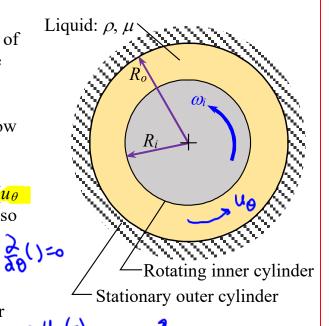
Example in Cylindrical Coordinates: Flow Between Two Concentric Cylinders

Given: An incompressible Newtonian liquid is confined between two concentric circular cylinders of infinite length (into the page; the z axis is out of the page) – a solid inner cylinder of radius R_i and a hollow, stationary outer cylinder of radius R_o . The inner cylinder rotates at angular velocity ω_i . The flow is steady, laminar, and two-dimensional in the r- θ plane. The flow is also rotationally symmetric, meaning that nothing is a function of coordinate $\theta(u_{\theta})$ and P are functions of radius r only). The flow is also circular, meaning that velocity component $u_r = 0$ everywhere.

To do: Generate an exact expression for velocity component u_{θ} as a function of radius r and the other parameters in the problem. You may ignore gravity.

Solution: We apply our step-by-step procedure:

Step 1. Identify the flow geometry and flow domain.

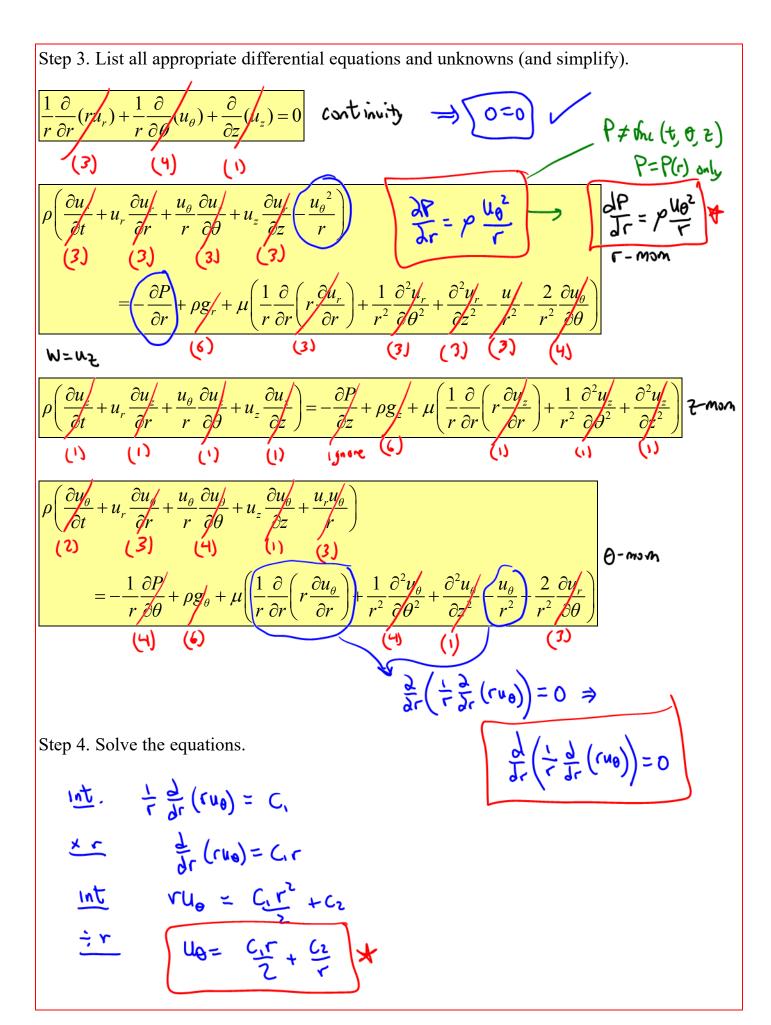


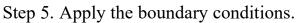
Step 2. List assumptions, approximations, and boundary conditions.

Assumptions and Approximations:

- The cylinders are infinite in the z direction (z is out of the page in the figure of the problem statement for a right-handed coordinate system). The velocity field is purely two-dimensional, which implies that w = 0 and derivatives of any velocity component with respect to z are zero. $\frac{1}{2}$ () = 0
- 2 The flow is steady, meaning that all time derivatives are zero.
- 3 The flow is circular, meaning that the radial velocity component u_r is zero.
- 4 The flow is rotationally symmetric, meaning that nothing is a function of θ .
- 5 The fluid is incompressible and Newtonian, and the flow is laminar.
- 6 Gravitational effects are ignored. (Note that gravity may act in the z direction, leading to an additional hydrostatic pressure distribution in the z direction. This would not affect the present analysis.) 9=0

Boundary Conditions:

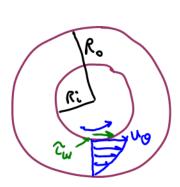




$$C = R_0, U_0 = 0 \Rightarrow 0 = \frac{C_1 R_0}{2} + \frac{C_2}{R_0} \Rightarrow C_2 = -C_1 \frac{R_0^2}{2}$$

$$C_{1} = \frac{-2R_{1}^{2}\omega_{1}}{R_{0}^{2} - R_{1}^{2}}$$

$$C_{2} = \frac{R_{0}^{2}R_{1}^{2}\omega_{1}}{R_{0}^{2} - R_{1}^{2}}$$



Step 6. Verify the results.

Step 7. Calculate other properties of interest.

Can calculate · Shear strep @ the Walls

- Volume from rate @ a crop-section

· Torque required to rotate the inner

As gop gets very small, Ro-Ri << Ri

cylinder

