APPROXIMATION FOR INVISCID REGIONS OF FLOW

In this lesson, we will:

- Define an Inviscid Region of Flow and the Euler Equation
- Emphasize the difference between Inviscid Fluid and Inviscid Flow
- Derive the **Beloved Bernoulli Equation** from the Euler equation
- Do an example problem using both Euler and Bernoulli equations

Inviscid Region of Flow

Definition: An inviscid region of flow is a region of flow in which net viscous forces are negligible compared to pressure and/or inertial forces.

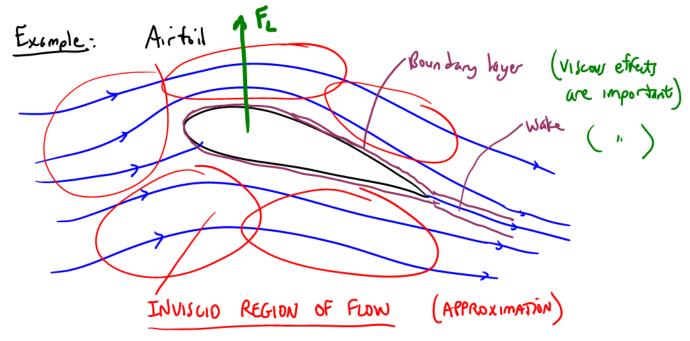
"Invisis" does not mean that the finid itself has zero viscosity

(However, in some regions of a flow, net viscoss effects

can be negligible compared to inertial and/or pressure effects

THIS IS WHAT WE CALL AN INVISCIO REGION OF FLOW

WE MAY HAVE INVISCIO FLOWS BUT NOT INVISCIO FLOWS



Approximate Navier-Stokes Equation for an Inviscid Region of Flow

[St]
$$\frac{\partial \vec{V}^*}{\partial t^*} + (\vec{V}^* \cdot \vec{\nabla}^*) \vec{V}^* = -[Eu] \vec{\nabla}^* P^* + \left[\frac{1}{Fr^2}\right] \vec{g}^* + \left[\frac{1}{Re}\right] \vec{\nabla}^{*2} \vec{V}$$
Unsteady Inertial Pressure Gravitational Viscous

Recall for creeping flow approximation, Re 261

only pressure : viscous terms

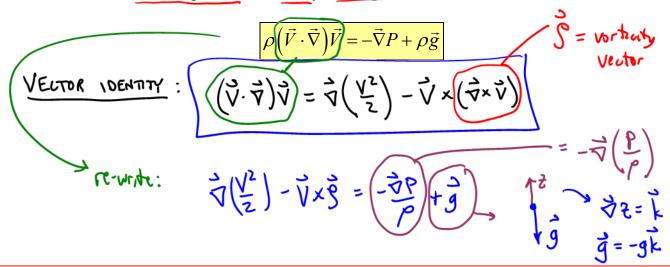
For inviscid regions of flow Re>>1

* EULER EQ (N'S W/O the VISCOU

THIS IS THE APPROXIMATE EQ. WE SOLVE IN INVISCIO REGIONS OF FLOW

Derivation of the Beloved Bernoulli Equation from the Euler Equation

We start with the Euler equation for steady incompressible flow,



Thus,
$$\sqrt{\frac{P}{2}} = -\sqrt{\frac{P}{2}} = -\sqrt{\frac{P}{2}} = -\sqrt{\frac{P}{2}} = -\sqrt{\frac{P}{2}} = -\sqrt{\frac{P}{2}} = \sqrt{\frac{P}{2}} = \sqrt{\frac{P$$

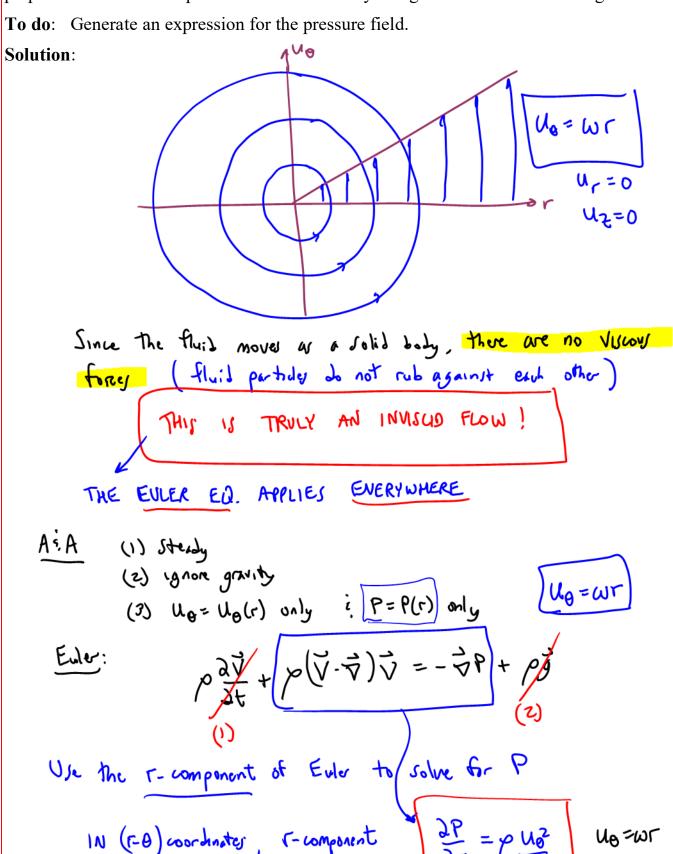
Here let
$$B = \left(\frac{P}{P} + \frac{V^2}{z} + g^2\right)$$

BELOVED BERNOLLI EQ

WE CONELUDE:
$$\frac{P}{\varphi} + \frac{V^2}{2} + gt = constant along a streamline$$

Example: Pressure Field in Solid Body Rotation

Given: A fluid is rotating as a solid body (solid body rotation) with angular speed ω perpendicular to the r- θ plane. The flow is steady and gravitational effects are ignored.



P=P(r) only
$$\Rightarrow \frac{dP}{dr} = \rho \frac{\omega^2 r^2}{r^2} + C$$
, $\frac{dP}{dr} = \rho \omega^2 r^2$

Integrate w.r.t. $r \Rightarrow P = \rho \frac{\omega^2 r^2}{2} + C$, BC: Let $P = P_0$ @ the origin $(r = 0)$ $P = P_0 + \rho \frac{\omega^2 r^2}{2}$ Ancher

Belayed Bernoulli EQ

P + $\rho \frac{d^2 r^2}{dr^2} = confront along streamlines

(2)

Appear to our solution for P, $P = P_0 + \rho \frac{\omega^2 r^2}{2} + confront along a streamline}$

Compare to our solution for P, $P = P_0 + \rho \frac{\omega^2 r^2}{2} + confront along a streamline}$

Compare to our solution for P, $P = P_0 + \rho \frac{\omega^2 r^2}{2} + confront along a streamline}$

Compare to our solution for P, $P = P_0 + \rho \frac{\omega^2 r^2}{2} + confront along a streamline}$

Our finil Bernoulli eq. $U = P_0 + \rho \frac{\omega^2 r^2}{2} + P_0 + \rho \frac{\omega^2 r^2}{2} = P_0 + \rho \frac{\omega^2 r^2}{2}$$