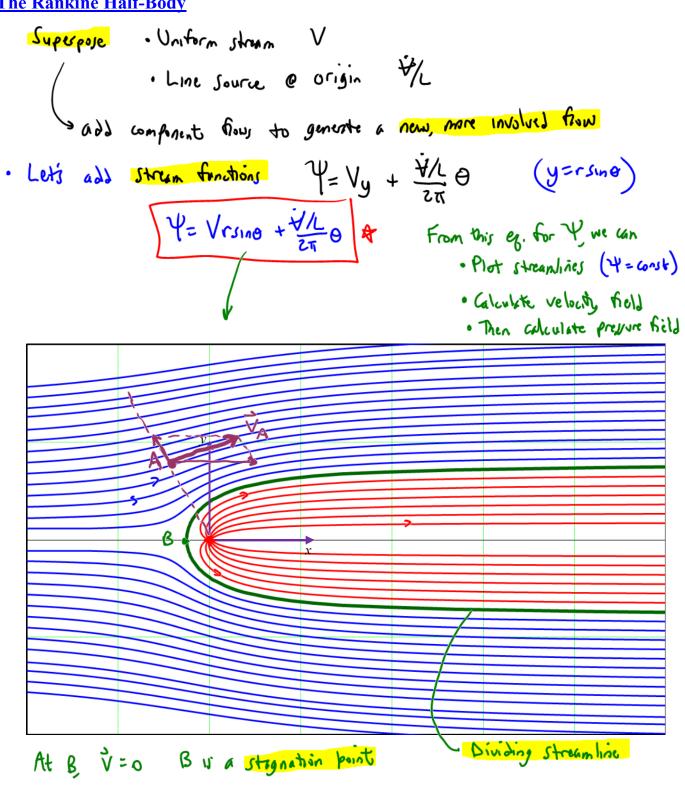
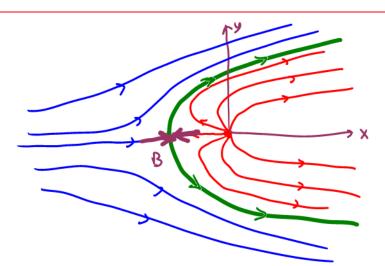
EXAMPLES OF SUPERPOSITION IN POTENTIAL FLOW

In this lesson, we will:

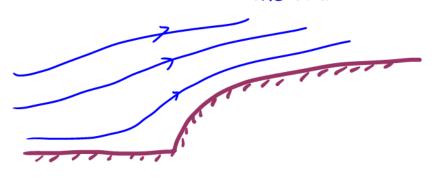
- Show some examples and applications of Superposition in Potential (Irrotational) Flow
- Introduce the **Method of Images** and how to apply it to potential flows

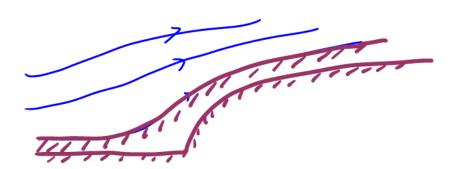
The Rankine Half-Body





ANY STREAMLINE IN A POTENTIAL FLOW CAN BE THOUGHT OF AS A WALL





ANALYSIS:
$$Y = V r sin \theta + \frac{1}{2\pi} \theta$$

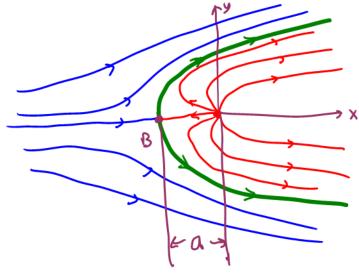
$$u_r = \frac{1}{r} \frac{\partial u}{\partial \theta} = \frac{1}{r} \sqrt{r} \cos \theta + \frac{1}{r} \frac{\partial u}{\partial r} \Rightarrow u_r = \sqrt{\cos \theta} + \frac{1}{r} \frac{\partial u}{\partial r}$$

$$U_0 = -\frac{\lambda \psi}{\lambda r} = -\sqrt{\sin \theta} \Rightarrow U_0 = -\sqrt{\sin \theta}$$

Here Up = 0 when
$$\theta = \pi$$

$$U_{r} = 0 \quad \text{when} \quad -V(cos\theta) = \frac{1}{2\pi r} \stackrel{V}{\downarrow}$$

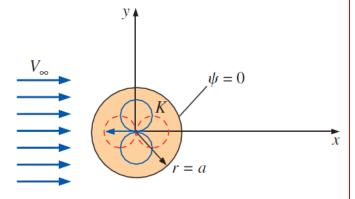
$$V = \frac{1}{2\pi r} \stackrel{V}{\downarrow}$$
let thu $r = a$ @ stagnation p t



Flow Over a Circular Cylinder

Given: Superpose a uniform stream of velocity V_{∞} and a doublet of strength K at the origin.

To do: Plot streamlines, and discuss the flow that results from this superposition.



Solution:

 We simply add up the stream functions for the two building block flows:

$$\psi = \psi_{\text{freestream}} + \psi_{\text{doublet}} = V_{\infty} y - K \frac{\sin \theta}{r}$$

Figures from Çengel and Cimbala, Ed. 4.

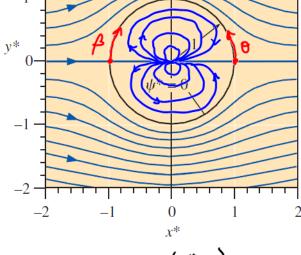
- But we know that $y = r \sin \theta$, thus, $\psi = V_{\infty} r \sin \theta K \frac{\sin \theta}{r}$
- For "convenience", and with hindsight, we choose to set $\psi = 0$ at r = a [It turns out that radius a is a special radius that becomes the radius of the circle.]
- Set r = a in our equation for the stream function:

$$0 = V_{\infty} a \sin \theta - K \frac{\sin \theta}{a} \rightarrow K \frac{1}{2} \left[K = V_{\infty} a^{2} \right]$$

• Then our final expression for ψ becomes

$$\psi = V_{\infty} \sin \theta \left(r - \frac{a^2}{r} \right)$$

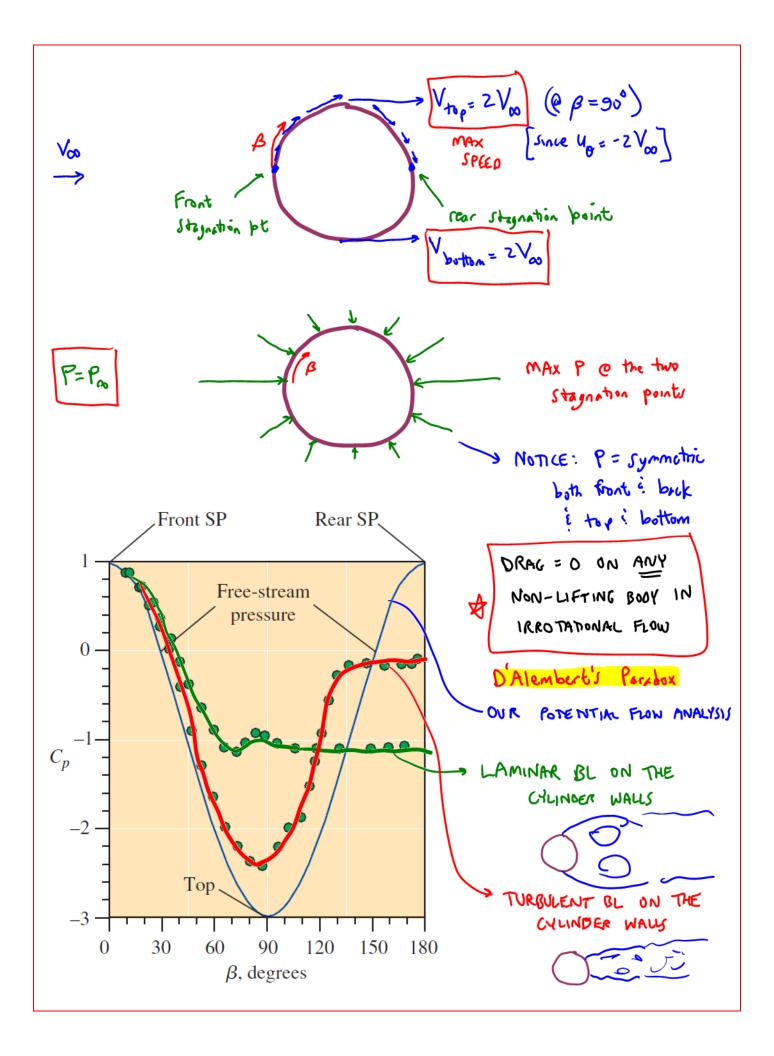
- Plot streamlines: [we plot nondimensionally, setting $x^*=x/a$ and $y^*=y/a$]
- From our equation for ψ above, we can calculate the velocity field from the definition



of ψ , i.e., $u_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$ $u_\theta = -\frac{\partial \psi}{\partial r}$. See text for details. On the cylinder (r = a),

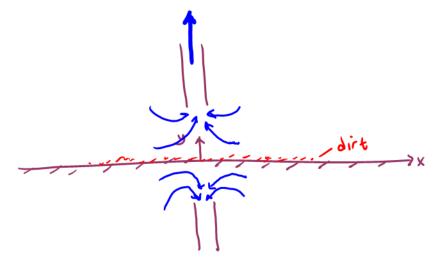
$$u_r = 0$$
 $u_{ heta} = -2V_{\infty}\sin{ heta}$ VELOCITY COMPONENTS ON THE WALL" OF THE CYLINDER

- We then apply the Most Beloved Bernoulli Equation to generate an expression for the pressure field $(1 + \frac{1}{2}\rho)^2 = (1 + \frac{1}{2}\rho)^2$
- We define the **pressure coefficient**, $C_p = \frac{P P_{\infty}}{\frac{1}{2} \rho V_{\infty}^2} = 1 \frac{V^2}{V_{\infty}^2}$
- On the cylinder, it turns out that $C_p = 1 4\sin^2 \beta$, where β is the angle from the nose.



The Method of Images

EXAMPLE: FLOW INTO THE Z-D ATTACHMENT OF A VACUUM CLEANER



WE MODEL THY FLOW BY THE SINKS

