
M E 320   Professor John M. Cimbala Lecture 05  
 
 

Today, we will: 
 

• Continue Chapter 3 – Pressure and Fluid Statics 
• Discuss applications of fluid statics (barometers and U-tube manometers) 
• Do some example problems (manometers) 

 

D. Applications of Fluid Statics (also called Hydrostatics) 

Note: The equation for fluid statics is  
dP g
dz

ρ= −  and the simplest way to remember and 

apply the fluid statics equation is below aboveP P g zρ= + ∆ . 

 
See pdf file on the course website: Some Rules About Hydrostatics (will review in class). 

 
• There are several “rules” that directly result from the 

above equation: 
1. If you can draw a continuous line through the same 

fluid from point 1 to point 2, then P1 = P2  if  z1 = z2 .   
E.g., consider the oddly shaped container in the sketch. By 
this rule, P1 = P2 and P4 = P5 since these points are at the 
same elevation in the same fluid. However, P2 does not 
equal P3 even though they are at the same elevation, 
because one cannot draw a line connecting these points through the same fluid.  In fact, P2 is less than P3 
since mercury is denser than water. 

2. Any free surface open to the atmosphere has atmospheric pressure, Patm. 
(This rule holds not only for hydrostatics, by the way, but for any free surface 
exposed to the atmosphere, whether that surface is moving, stationary, flat, or 
curved.)  Consider the hydrostatics example of a container of water. The little 
upside-down triangle indicates a free surface, and means that the pressure there is 
atmospheric pressure, Patm.  In other words, in this example, P1 = Patm.  To find the 
pressure at point 2, our hydrostatics equation is used: 
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3. In most practical problems, atmospheric pressure is assumed to be constant at all elevations (unless 
the change in elevation is large). 

Consider the example shown, in which water is pumped 
from one large reservoir to another. The pressure at both 1 
and 2 is atmospheric. But since point 2 is higher in 
elevation than point 1, the local atmospheric pressure at 2 
is a little lower than that at point 1.  To be precise, our 
hydrostatics equation may be used to account for the 
difference in elevation between points 1 and 2. 
However, since the density of water is so much greater 
than that of air, it is common to ignore the difference 
between P1 and P2, and call them both the same value of atmospheric pressure, Patm. 
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4. The shape of a container does not matter in hydrostatics. (Except of course for very small diameter 
tubes, where surface tension and the 
capillary effect become important.) 

Consider the three containers in the figure. At 
first glance, it may seem that the pressure at 
point 3 would be greater than that at point 2, 
since the weight of the water is more 
“concentrated” on the small area at the 
bottom, but in reality, all three pressures are 
identical.  Use of our hydrostatics equation 
confirms this conclusion, i.e., 

below above
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In all three cases, a thin column of water above the point in question at the bottom is identical.  Pressure 
is a force per unit area, and over a small area at the bottom, that force is due to the weight of the water 
above it, which is the same in all three cases, regardless of the container shape. 

5. Pressure is constant across a flat fluid-fluid interface. 
For example, consider the container in the figure, which is partially filled with 
mercury, and partially with water. In this case, our hydrostatics equation must be 
used twice, once in each of the liquids.   
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Note that if the interface is not flat, but curved, there will be a pressure difference 
across that interface. 
 

Applications of Hydrostatics: 
1.  Mercury barometer – a device used to measure atmospheric pressure 
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2. “Head” as a pressure measurement 
 
 
 
 
 
 
 
 
3. The U-tube manometer 

Purpose: 
 
Example: Pressure measurement with a U-tube manometer 
Given: A U-tube manometer is used as an 
instrument to measure the pressure in a tank. The right 
leg of the manometer is open to atmospheric pressure. 
(a) To do: Calculate the absolute and gage pressure 
PA and PA,gage for the general case in which ρA is not 
small compared to ρm. 
(b) To do: Simplify for the case in which ρA << ρm 
(e.g., A is air and m is mercury). 
Solution: 
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Example: Pressure measurement with a U-tube manometer 
Given: A U-tube manometer is used as 
a differential pressure measurement 
instrument to measure the pressure 
difference between two tanks. The two tanks 
are at the same elevation. 
(a) To do: Calculate the pressure 
difference PB – PA for the general case in 
which ρA is not the same as ρB (they are 
different fluids. 
(b) To do: Simplify for the case in which 
ρA = ρB (they are the same fluid). 
Solution: 
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4. Some Notes about Manometry    [from pdf file on website] 
 
 
 

The elevation difference ∆z in a U-tube manometer does not depend on the following: 
1. U-Tube diameter (provided that the tube diameter is large enough that capillary effects are negligible). 
In the sketch below, for a given pressure in the tank, ∆z is the same in manometers A and B, even though the 
tube diameter of manometer B is larger than that of manometer A. Note that the amount of manometer liquid 
in each of the U-tube manometers has been adjusted such that the level of the interface between fluids 1 and 
2 on the left side of each manometer is at the same elevation, for direct horizontal comparison.  
 
 

Patm 

Pressure 
chamber 

A 

r2 

r1 

∆z  ∆z  

Manometer B 

Manometer C 

Tee 

∆z  

Manometer ∆ 

∆z  

Manometer A  
Why? 
 
  
 
 

2. U-Tube length (provided that the tubes are long enough to include elevation difference ∆z). In the 
sketch, ∆z is the same in manometers A and C, even though manometer C is shorter than manometer A.  
Why? 
 
 
 
 
3. U-Tube shape (again provided that capillary effects are not important and the relative elevation is the 
same). In the sketch, ∆z is the same in manometers A and D, even though manometer D is oddly shaped. Can 
you think of an advantage of the “inclined manometer” configuration of manometer D?  



However, the elevation difference ∆z in a U-tube manometer does depend on the following: 
1. Manometer fluid. For example, if we replace the blue manometer fluid in the above sketch with a higher 
density (gray colored) fluid, as in the sketch below, ∆z would decrease. In other words, ∆zE < ∆zA. 
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Which manometer (A or E) would have better resolution? 
 
 
 
 
 
2. Vertical location of the manometer. For example, if we move manometer A to a lower elevation, all 
else being the same, and ignoring changes in atmospheric pressure (manometer A′ in the above sketch), ∆z 
would increase, i.e., ∆zA′ > ∆zA. Why? 
 
 
 
 
 
 
Note: if ρ1 << ρ2, then ∆zA′ ≈ ∆zA, regardless of the vertical location of the manometers. This is usually the 
case, for example, when fluid 1 is a gas, but the effect can be significant if both fluids are liquids. 



5. Isobars 
 
 
 


