
M E 320   Professor John M. Cimbala Lecture 10  
 

Today, we will: 
 Finish our example problem – rates of motion and deformation of fluid particles 
 Discuss the Reynolds Transport Theorem (RTT) 
 Show how the RTT applies to the conservation laws 
 Begin Chapter 5 – Conservation Laws 

 

Example: Rates of motion and deformation (Continuation of previous example) 
Given: A two-dimensional velocity field in the x-y plane:   3 3V u,v xi yj  

  
 (w = 0).  

To do: Calculate (a) rate of translation, (b) rate of rotation, (c) linear strain rate, (d) the shear 
strain rate, and (e) the strain rate tensor. 
 

Solution: We did Parts (a) and (b) already. Recall,  
 

(a) The rate of translation is simply the velocity vector,  V ui vj wk  
  

. Here,  

the rate of translation = 3 3V xi yj 
  

. 

(b) The rate of rotation is 
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the rate of rotation is  0 


, and the vorticity = 2 0  
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. This flow is irrotational. 
 

(c) The three components of linear strain rate are  
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(d) The three components of shear strain rate are  
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(e) The strain rate tensor  
We can conveniently combine the linear strain rates and the shear strain rates into one 9-
component matrix, which is actually a 3x3 tensor called the strain rate tensor: 
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D. The Reynolds Transport Theorem (RTT) (Section 4-6) 
1. Introduction and derivation 

 
The Reynolds Transport Theorem (RTT) (Section 4-6)  

 

Recall from Thermodynamics: 
 A system [also called a closed system] is a quantity of matter of fixed identity. No mass 

can cross a system boundary. 
 A control volume [also called an open system] is a region in space chosen for study. 

Mass can cross a control surface (the surface of the control volume). 
 The fundamental conservation laws (conservation of mass, energy, and momentum) 

apply directly to systems. 
 However, in most fluid mechanics problems, control volume analysis is preferred 

over system analysis (for the same reason that the Eulerian description is usually 
preferred over the Lagrangian description). 

 Therefore, we need to transform the conservation laws from a system to a control 
volume. This is accomplished with the Reynolds transport theorem (RTT). 

 

There is a direct analogy between the transformation from Lagrangian to Eulerian descriptions (for 
differential analysis using infinitesimally small fluid elements) and the transformation from systems 
to control volumes (for integral analysis using large, finite flow fields): 

 
In both cases, the fundamental laws of physics (conservation laws) are known in the analysis 
on the left (Lagrangian or system), and must be transformed so as to be useful in the analysis 
on the right (Eulerian or control volume).

Integral analysis 
The Reynolds transport 
theorem is used to transform 
from system to control volume 
for integral analysis 

The material derivative is used 
to transform from Lagrangian to 
Eulerian descriptions for 
differential analysis 

Differential analysis 



Another way to think about the RTT is that it is a link 
between the system approach and the control volume 
approach: 
 
See text for detailed derivation of the RTT. Some 
highlights: 

 Let B represent any extensive property (like mass, 
energy, or momentum). 

 Let b be the corresponding intensive property, i.e., 
b = B/m (property B per unit mass). 

 Our goal is to find a relationship between Bsys or 
bsys (property of the system, for which we know the 
conservation laws) and BCV or bCV (property of the control volume, which we prefer to 
use in our analysis). 

 The results are shown below in various forms: 
 

For fixed (non-moving and non-deforming) control volumes, 
 

 

 
 
 
 
 
 
 
 
For nonfixed (moving and/or deforming) control volumes, 

 
 
 
 
where rV


 is the relative velocity, i.e., the velocity of the fluid relative to the control surface 

(which may be moving or deforming), 

 

Since the control volume is fixed, the order of integration or differentiation does not 

matter, i.e., 
CV

...
d

dt   is the same as 
CV

...
t


  . Thus, the two circled quantities above are 

equivalent for a fixed control volume. 
 

Note: The only difference in the equations is that we replace  V


 by rV


 in this 

version of the RTT for a moving and/or deforming control volume. 



We can also switch the order of the time derivative and the integral in the first term on the 
right, but only if we use the absolute (rather than the relative) velocity in the second term on 
the right, i.e., 

 
Comparing Eqs. 4-45 and 4-42, we see that they are identical. Thus, the most general form of 
the RTT that applies to both fixed and non-fixed control volumes is  

 
Even though this equation is most general, it is often easier in practice to use Eq. 4-44 for 
moving and/or deforming (non-fixed) control volumes because the algebra is easier. 
 
Simplifications: 

 For steady flow, the volume integral drops out. In terms of relative velocity, 

 
 For control volumes where there are well-defined inlets and outlets, the control 

surface integral can be simplified, avoiding cumbersome integrations, 

  
 

Note that the above equation is approximate, and may not always be accurate, but will be 
used almost exclusively in this course, and is used generally in engineering analysis. 
 


