M E 320 Professor John M. Cimbala Lecture 16

Today, we will:

. Do some more example problems — linear CV momentum equation
. Discuss the control volume equation for angular momentum

E. The Linear Momentum Equation for a Control Volume (continued)
4. Examples (continued)

Example: Tension in a cable
Given: A cart with frictionless wheels and a large tank shoots water at a deflector plate,

turning it by angle @ as sketched. The cart v
tries to move to the left, but a cable prevents it Viet» Ajets Biet
from doing so. At the exit of the deflector, the Tank z 1 X P

water jet area Ajq, 1ts average velocity Vi, and

its momentum flux correction factor S are Cart — T _(-I;t;l;:
known. \
@ @

To do: Calculate the tension 7 in the cable.

Solution:
e First step:
e Second step: Use the approximate, most useful form of the linear momentum equation,

out
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ZF = ZF'gravity +ZF;)ressure +ZFViSCOUS +ZE)ther ZE j IOVdV +ZIBmV_ZﬁmV
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Example: Force to hold a cart in place
Given:  Water shoots out of a large tank 31tt1ng on a cart. The water jet velocity is V; = 7.00
m/s, its cross-sectional area is 4; = 20.0 mm’, and the
momentum flux correction factor of the jet is 1.04.

The water is deflected 135° as shown (6= 45°), and all
of the water flows back into the tank. The density of
the water is 1000 kg/m’.

To do:  Neglecting friction on the wheels, calculate
the horizontal force F (in units of N) required to hold
the cart in place.

Solution:
e First step:
e Second step: Use the approximate, most useful form of the linear momentum equation,

Z F Z F_:gravity Z pressure + Z viscous Z other - I deV + Z ﬂm V Z ﬂm 17
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Example: Force imparted by a water jet hitting a stationary plate
Given: A horizontal water jet of area 4;, average
velocity V;, and momentum flux correction factor f;
impinges normal to a stationary vertical flat plate.

To do:  Calculate the horizontal force F required to
keep the plate from moving.

Solution:

e First step:

e Second step: Use the approximate, most useful form
of the linear momentum equation,

. . . _, ~ d = . .
ZF Zﬁvgravity +ZF;)ressure +2Fviscous +ZF;)ther :E I deV +ZﬂmV_ZﬂmV
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Example: Force imparted by a water jet hitting a moving plate
Given: A horizontal water jet of area 4;, average
velocity V;, and momentum flux correction factor f;
impinges normal to a moving vertical flat plate. The
plate moves to the right at constant speed V.

To do:  Calculate the horizontal force F required to
keep the plate moving at constant speed V.

Solution:

e First step:

¢ Second step: Use the approximate, most useful form of the linear momentum equation, in
the x-direction, for a moving CV, but steady:

ZFx = ZFx, gravity + ZEc,pressure + ZFx, viscous + ZEc,other = Zﬂmur - Zﬂmur
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Example: Force on a bucket of a Pelton-type (impulse) hydroturbine

Given: An impulse turbine is driven
by a high-speed water jet (average
jet velocity Vj over jet area A4;, with
momentum flux correction factor
i) that impinges on turning buckets
attached to a turbine wheel as
shown. The turbine wheel rotates at
angular velocity o, and is
horizontal; therefore, gravity effects
are not important in this problem.
(The view in the sketch is from the
top.) The turning buckets turn the
water approximately 180 degrees,
and the water exits the bucket over 4V By

exit cross-sectional area 4. with exit momentum flux correction factor f.. For simplicity, we
approximate that the bucket dimension s is much smaller than turbine wheel radius R (s <<
R).

(a) To do: Calculate the force of the bucket on the turbine wheel, Fyuciet on wheel» at the instant
in time when the bucket is in the position shown.

(b) To do: Calculate the power delivered to the turbine Foucket on wheel

Wheel. EEEEEEEEEEEED
F wheel on bucket

Solution: We choose a control volume surrounding the

bucket, cutting through the water jet at the inlet to the

bucket, and cutting through the water exiting the bucket. Ae B 7
/

Note that this is a moving control volume, moving to the oR
right at speed wR. We also cut through the welded joint —
between the bucket and the turbine wheel, where the
force Flycket on wheel 1S t0 be calculated. Because of

s . . V
Newton’s third law, the force acting on the control j

volume at this location is equal in magnitude, but 4 B - = =
opposite in direction, and we call it Fyneel on bucket-

Since the pressure through an incompressible jet exposed to atmospheric air is equal to Py,
the pressure at the inlet (1) is equal to P, and the pressure at the exit (2) is also equal to
P atm-

Solution to be completed in class.




e Use the x-component of the steady linear momentum equation for a moving CV,

ZFx = ZFx, gravity + ZEc,pressure + ZFx, viscous + ZEc,other = Zﬂmur - Zﬂmur
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Angular Momentum Control Volume Analysis
(Section 6-6, Cengel and Cimbala)

1. Equations and definitions
See the derivation in the book, using the Reynolds transport theorem. The result is:

- 0 C .
EMZ‘_’ (r XV)pdV + ’ ff'XV}pdA (6-47)
dt Jey JCS

(Relative velocity)

General:

which 1s stated in words as

The net flow rate of
The sum of all

The time rate of change
external moments | = | of the angular momentum | +

acting on a CV of the contents of the CV

angular momentum
out of the control
surface by mass flow

We simplify the control surface integral for cases in which there are well-defined inlets and
outlets, just as we did previously for mass, energy, and momentum. The result is:

— d — — —
2M=—| (FXV)pdV+ X (FXmV)— X (FXmV) (650
ICV out in

Note that we cannot define an “angular momentum flux correction factor” like we did
previously for the kinetic energy and momentum flux terms. Furthermore, many problems we
consider in this course are steady. For steady flow, Eq. 6-50 reduces to:

Steady flow: zfﬁ = EIF X hV) — ZEF X V) (6-51)
/ out T in \
Net moment or Rate of flow of Rate of flow of

the control volume
by external means

torque acting on = | angular momentum

out of the control
volume by mass flow

angular momentum
into the control
volume by mass flow

Finally, in many cases, we are concerned about only one axis of rotation, and we simplify Eq.
6-51 to a scalar equation,

DM = > rmV— > mV (6-52)
out mn

Equation 6-52 is the form of the angular momentum control volume equation that we will

most often use, noting that r is the shortest distance (i.e., the normal distance) between the

point about which moments are taken and the /ine of action of the force or velocity being

considered. By convention, counterclockwise moments are positive.




2. Examples
See Examples 6-8 and 6-9 in the book. Example 6-8 is discussed in more detail here.
EXAMPLE 6-8 Bending Moment Acting at the Base
of a Water Pipe

Underground water is pumped through a 10-cm-diameter pipe that consists
of a 2-m-long vertical and 1-m-long horizontal section, as shown in Fig. 6-39.
Water discharges to atmospheric air at an average velocity of 3 m/s, and the
mass of the horizontal pipe section when filled with water is 12 kg per meter
length. The pipe is anchored on the ground by a concrete base. Determine
the bending moment acting at the base of the pipe (point A) and the required
length of the horizontal section that would make the moment at point A zero.

SOLUTION Water is pumped through a piping section. The moment acting
at the base and the required length of the horizontal section to make this
moment zero is to be determined.
Assumptions 1 The flow is steady. 2 The water is discharged to the atmo-
sphere, and thus the gage pressure at the outlet is zero. 3 The pipe diameter
is small compared to the moment arm, and thus we use average values of
radius and velocity at the outlet.
Properties We take the density of water to be 1000 kg/m3.
Analysis  We take the entire L-shaped pipe as the control volume, and cl|esig-
nate the inlet by 1 and the outlet by 2. We also take the x- and z-coordinates
as shown. The control volume and the reference frame are fixed.

The conservation of mass equation for this one-inlet, one-outlet, steady-
flow system is m;, = m, = m, and V;, = V, = V since A, = constant. The
mass flow rate and the weight of the horizontal section of the pipe are

i = pA.V = (1000 kg/m*)[7(0.10 m)>/4](3 m/s) = 23.56 kg/s

IN
1 kg-m/s?

W = mg = (12 kg/m)(1 m)(9.81 m/sz]( ) = 117.7N

To determine the moment acting on the pipe at point A, we need to take the
moment of all forces and momentum flows about that point. This is a steady-
flow problem, and all forces and momentum flows are in the same plane.
FIGURE 6-39 Therefore, the angular momentum equation_in this case is expressed as

Schematic for Example 6-8 and the
free-body diagram.

where r is the average moment arm, V is the average speed, all moments in
the counterclockwise direction are positive, and all moments in the clock-

These moments are wise direction are negative.
moments acting on the CV.

These moments are moments |~
due to angular momentum.

The free-body diagram of the L-shaped pipe is given in Fig. 6-39. Noting
that the moments of all forces and momentum flows passing through point A
are zero, the only force that yields a moment about point A is the weight W
of the horizontal pipe section, and the only momentum flow that yields a
moment is the outlet stream (both are negative since both moments are in
the clockwise direction). Then the angular momentum equation about point A
becomes

M, — rnW= —rmV,




Solving for M, and substituting give

= (0.5 — (2 56 kg 1 e
(0.5m)(118 N) m)(23.56 kg/s)(3 mf"S)(l kg-mﬂ"Sz)

= —82.5N-m

The negative sign indicates that the assumed direction for M, is wrong and
should be reversed. Therefore, a moment of 82.5 N-m acts at the stem of
the pipe in the clockwise direction. That is, the concrete base must apply a
82.5 N-m moment on the pipe stem in the clockwise direction to counteract
the excess moment caused by the exit stream.

The weight of the horizontal pipe is w = W/L = 117.7 N per m length.
Therefore, the weight for a length of Lm is Lw with a moment arm of r, = L/2.
Setting M, = O and substituting, the length L of the horizontal pipe that
would cause the moment at the pipe stem to vanish is determined to be

0= I‘]W — rngE — 0= (UE)LW — f’gﬁlVg

or
2rymV, 2(2 m)(23.56 kg/s)(3 m/s) N _
e = 5] = 1L.55m
w 117.7 N/m kg-m/s

Discussion Note that the pipe weight and the momentum of the exit stream
cause opposing moments at point A. This example shows the importance of
accounting for the moments of momentums of flow streams when performing
a dynamic analysis and evaluating the stresses in pipe materials at critical
cross sections.




