
M E 320   Professor John M. Cimbala Lecture 16  
 

Today, we will: 
 

• Do some more example problems – linear CV momentum equation 
• Discuss the control volume equation for angular momentum 

 

E. The Linear Momentum Equation for a Control Volume (continued) 
4. Examples (continued) 
 

Example: Tension in a cable 
Given: A cart with frictionless wheels and a large tank shoots water at a deflector plate, 
turning it by angle θ  as sketched. The cart 
tries to move to the left, but a cable prevents it 
from doing so. At the exit of the deflector, the 
water jet area Ajet, its average velocity Vjet, and 
its momentum flux correction factor βjet are 
known. 
 

To do: Calculate the tension T in the cable.  
 

Solution: 
• First step: 
• Second step: Use the approximate, most useful form of the linear momentum equation, 
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Example: Force to hold a cart in place 
Given: Water shoots out of a large tank sitting on a cart. The water jet velocity is Vj = 7.00 
m/s, its cross-sectional area is Aj = 20.0 mm2, and the 
momentum flux correction factor of the jet is 1.04.  
The water is deflected 135o as shown (θ = 45o), and all 
of the water flows back into the tank. The density of 
the water is 1000 kg/m3.  
 

To do: Neglecting friction on the wheels, calculate 
the horizontal force F (in units of N) required to hold 
the cart in place.  
 

Solution: 
• First step: 
• Second step: Use the approximate, most useful form of the linear momentum equation, 
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Example: Force imparted by a water jet hitting a stationary plate 
Given: A horizontal water jet of area Aj, average 
velocity Vj, and momentum flux correction factor β j 
impinges normal to a stationary vertical flat plate. 
 

To do: Calculate the horizontal force F required to 
keep the plate from moving.  
 

Solution: 
• First step: 
• Second step: Use the approximate, most useful form 

of the linear momentum equation, 

gravity pressure viscous other
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dF F F F F Vd mV mV
dt
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Example: Force imparted by a water jet hitting a moving plate 
Given: A horizontal water jet of area Aj, average 
velocity Vj, and momentum flux correction factor β j 
impinges normal to a moving vertical flat plate. The 
plate moves to the right at constant speed Vp. 
 

To do: Calculate the horizontal force F required to 
keep the plate moving at constant speed Vp.  
 

Solution: 
• First step: 
• Second step: Use the approximate, most useful form of the linear momentum equation, in 

the x-direction, for a moving CV, but steady: 
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Example: Force on a bucket of a Pelton-type (impulse) hydroturbine 
 

Given: An impulse turbine is driven 
by a high-speed water jet (average 
jet velocity Vj over jet area Aj, with 
momentum flux correction factor β 

j) that impinges on turning buckets 
attached to a turbine wheel as 
shown. The turbine wheel rotates at 
angular velocity ω, and is 
horizontal; therefore, gravity effects 
are not important in this problem. 
(The view in the sketch is from the 
top.) The turning buckets turn the 
water approximately 180 degrees, 
and the water exits the bucket over 
exit cross-sectional area Ae with exit momentum flux correction factor βe. For simplicity, we 
approximate that the bucket dimension s is much smaller than turbine wheel radius R (s << 
R). 
 

(a) To do: Calculate the force of the bucket on the turbine wheel, Fbucket on wheel, at the instant 
in time when the bucket is in the position shown. 
 

(b) To do: Calculate the power delivered to the turbine 
wheel. 
 

Solution: We choose a control volume surrounding the 
bucket, cutting through the water jet at the inlet to the 
bucket, and cutting through the water exiting the bucket. 
Note that this is a moving control volume, moving to the 
right at speed ω R. We also cut through the welded joint 
between the bucket and the turbine wheel, where the 
force Fbucket on wheel is to be calculated. Because of 
Newton’s third law, the force acting on the control 
volume at this location is equal in magnitude, but 
opposite in direction, and we call it Fwheel on bucket. 
 

Since the pressure through an incompressible jet exposed to atmospheric air is equal to Patm, 
the pressure at the inlet (1) is equal to Patm, and the pressure at the exit (2) is also equal to 
Patm. 
 

Solution to be completed in class. 
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• Use the x-component of the steady linear momentum equation for a moving CV, 

, gravity , pressure , viscous , other
out in
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Angular Momentum Control Volume Analysis 
(Section 6-6, Çengel and Cimbala) 

1. Equations and definitions 
See the derivation in the book, using the Reynolds transport theorem. The result is: 

 

 
We simplify the control surface integral for cases in which there are well-defined inlets and 
outlets, just as we did previously for mass, energy, and momentum. The result is: 

 
Note that we cannot define an “angular momentum flux correction factor” like we did 
previously for the kinetic energy and momentum flux terms. Furthermore, many problems we 
consider in this course are steady.  For steady flow, Eq. 6-50 reduces to: 

 
 
 
 = −  
 
 
 
 
Finally, in many cases, we are concerned about only one axis of rotation, and we simplify Eq. 
6-51 to a scalar equation, 

 
Equation 6-52 is the form of the angular momentum control volume equation that we will 
most often use, noting that r is the shortest distance (i.e., the normal distance) between the 
point about which moments are taken and the line of action of the force or velocity being 
considered. By convention, counterclockwise moments are positive. 

(Relative velocity) 
 

Net moment or 
torque acting on 
the control volume 
by external means 
 

Rate of flow of 
angular momentum 
into the control 
volume by mass flow 
 

Rate of flow of 
angular momentum 
out of the control 
volume by mass flow 
 



2. Examples 
See Examples 6-8 and 6-9 in the book. Example 6-8 is discussed in more detail here. 

 

 
 
 
 

 

These moments are  
moments acting on the CV. These moments are  moments 

due to angular momentum. 



 
 
 
 


