M E 320

Professor John M. Cimbala

Lecture 18

Today, we will:

- Finish discussing the example problem from last lecture
- Do some more example problems dimensional analysis
- Discuss experimental testing and incomplete similarity

Example: Dimensional analysis – Car drag V**Given**: The drag force F_D on a car is a function A = frontal area of four variables: air velocity V, air density μ, ρ ρ , air viscosity μ , and the length L of the car. F_D To do: Express this relationship in terms of nondimensional parameters. Solution: We followed the six steps for the method of repeating variables. L See previous lecture. We completed step 5, and had Π_1 = dependent Pi = C_D = drag coefficient = $\frac{F_D}{\frac{1}{2}\rho V^2 A}$ Π_2 = independent Pi = Re = Reynolds number = $\frac{\rho VL}{\mu}$ Finally, Step 6 is to write the relationship between the Π_s : $\Pi_1 = \text{func}(\Pi_2, \Pi_3, ...)$:

Example: Dimensional analysis – Soap bubble Given: The difference in pressure ΔP between the inside and outside of a soap bubble is known to be a function of surface tension σ_s and soap bubble radius *R*.

To do: Use dimensional analysis to express the relationship between ΔP , σ_s , and *R* in dimensionless form.

Solution:

Step 1: (list the variables)

Step 2: (list the dimensions)

Step 3: (pick reduction *j*)

Step 4: (pick the repeating variables)

Step 5: (calculate the Π s)

Example: Dimensional analysis – shaft power Given: The output power \dot{W} of a spinning shaft is a function of torque *T* and angular velocity ω .

To do: Use dimensional analysis to express the relationship between \dot{W} , *T*, and ω in dimensionless form.

Solution:

Step 1: (list the variables)

Step 2: (list the dimensions)

Step 3: (pick reduction *j*)

Step 4: (pick the repeating variables)

Step 5: (calculate the Π s)