Today, we will:

- Continue our brief introduction to: **CFD** (Chapter 15)
- Begin Chapter 10 Approximate Solutions of the N-S Equation

2. CFD solution procedure

• Step 1: Choose a computational domain.

VIII. APPROXIMATE SOLUTIONS OF THE NAVIER-STOKES EQUATION			
A. Introduction			
We have three ways to solve the differential equations of fluid flow: 1. Analytically (Chapter 9) [solve exactly, but only for very simple problems] 2. Numerically (Chapter 15) [use CFD on a computer to solve for thousands of cells] 3. Approximately (Chapter 10) [ignore some terms in the N-S equation, then solve]			
B. Nondimensionalization of the Equations of Motion			

Nondimensionalization of the Navier-Stokes Equation (Section 10-2, Cengel and Cimbala)

Nondimensionalization:

We begin with the differential equation for conservation of linear momentum for a Newtonian fluid, i.e., the *Navier-Stokes equation*. For incompressible flow,

$$\rho \frac{D\vec{V}}{Dt} = \rho \left[\frac{\partial \vec{V}}{\partial t} + (\vec{V} \cdot \vec{\nabla}) \vec{V} \right] = -\vec{\nabla} P + \rho \vec{g} + \mu \nabla^2 \vec{V}$$
 (10–2)

Equation 10-2 is *dimensional*, and each variable or property $(\rho, \vec{V}, t, \mu, \text{ etc.})$ is also *dimensional*. What are the primary dimensions (in terms of $\{m\}$, $\{L\}$, $\{t\}$, $\{t\}$, etc) of each term in this equation?

To *nondimensionalize* Eq. 10-2, we choose *scaling parameters* as follows:

TABLE 10-1

Scaling parameters used to nondimensionalize the continuity and momentum equations, along with their primary dimensions

Scaling Parameter	Description	Primary Dimensions
L	Characteristic length	{L}
V	Characteristic speed	$\{Lt^{-1}\}$
f	Characteristic frequency	$\{t^{-1}\}$
$P_0 - P_{\infty}$	Reference pressure difference	$\{mL^{-1}t^{-2}\}$
g	Gravitational acceleration	$\{Lt^{-2}\}$

We define *nondimensional variables*, using the scaling parameters in Table 10-1:

To plug Eqs. 10-3 into Eq. 10-2, we need to first rearrange the equations in terms of the dimensional variables, i.e.,

$$t = \frac{1}{f}t^* \qquad \vec{x} = L\vec{x}^* \qquad \vec{V} = V\vec{V}^*$$

$$P = P_{\infty} + (P_0 - P_{\infty})P^* \qquad \vec{g} = g\vec{g}^* \qquad \vec{\nabla} = \frac{1}{L}\vec{\nabla}^*$$

Now we substitute all of the above into Eq. 10-2 to obtain

$$\rho V f \frac{\partial \overrightarrow{V}^*}{\partial t^*} + \frac{\rho V^2}{L} \left(\overrightarrow{V}^* \cdot \overrightarrow{\nabla}^* \right) \overrightarrow{V}^* = -\frac{P_0 - P_\infty}{L} \, \overrightarrow{\nabla}^* P^* + \rho g \overrightarrow{g}^* + \frac{\mu V}{L^2} \, \nabla^{*2} \overrightarrow{V}^*$$

Every additive term in the above equation has primary dimensions $\{m^1L^{-2}t^{-2}\}$. To nondimensionalize the equation, we multiply every term by constant $L/(\rho V^2)$, which has primary dimensions $\{m^{-1}L^2t^2\}$, so that the dimensions cancel. After some rearrangement,

$$\begin{bmatrix}
\frac{fL}{V} \\
\frac{\partial \vec{V}^*}{\partial t^*} + (\vec{V}^* \cdot \vec{\nabla}^*) \vec{V}^* = -\begin{bmatrix}
P_0 - P_{\infty} \\
\rho V^2
\end{bmatrix} \vec{\nabla}^* P^* + \begin{bmatrix}
gL \\
V^2
\end{bmatrix} \vec{g}^* + \begin{bmatrix}
\mu \\
\rho VL
\end{bmatrix} \vec{\nabla}^{*2} \vec{V}^* \quad (10-5)$$
Strouhal number, where where where St = $\frac{fL}{V}$ Eu = $\frac{P_0 - P_{\infty}}{\rho V^2}$ where Fr = $\frac{V}{\sqrt{gL}}$ where Fr = $\frac{V}{\sqrt{gL}}$ Re = $\frac{\rho VL}{\mu}$

Thus, Eq. 10-5 can therefore be written as

Navier-Stokes Equation in Nondimensional Form:

$$[\operatorname{St}] \frac{\partial \overrightarrow{V}^*}{\partial t^*} + (\overrightarrow{V}^* \cdot \overrightarrow{\nabla}^*) \overrightarrow{V}^* = -[Eu] \overrightarrow{\nabla}^* P^* + \left[\frac{1}{\operatorname{Fr}^2} \right] \overrightarrow{g}^* + \left[\frac{1}{\operatorname{Re}} \right] \nabla^{*2} \overrightarrow{V}^*$$
 (10–6)

Nondimensionalization vs. Normalization:

Equation 10-6 above is *nondimensional*, but not necessarily *normalized*. What is the difference?

- **Nondimensionalization** concerns only the **dimensions** of the equation we can use *any* value of scaling parameters L, V, etc., and we always end up with Eq. 10-6.
- *Normalization* is more restrictive than nondimensionalization. To *normalize* the equation, we must choose scaling parameters L, V, etc. that are appropriate for the flow being analyzed, such that *all nondimensional variables* $(t^*, \vec{V}^*, P^*, \text{etc.})$ *in Eq.* 10-6 *are of order of magnitude unity*. In other words, their minimum and maximum values are reasonably close to 1.0 (e.g., $-6 < P^* < 3$, or $0 < P^* < 11$, but *not* $0 < P^* < 0.001$, or -200 $< P^* < 500$). We express the normalization as follows:

$$t^* \sim 1$$
, $\vec{x}^* \sim 1$, $\vec{V}^* \sim 1$, $P^* \sim 1$, $\vec{g}^* \sim 1$, $\vec{\nabla}^* \sim 1$

If we have properly normalized the Navier-Stokes equation, we can compare the *relative importance* of various terms in the equation by comparing the *relative magnitudes* of the nondimensional parameters St, Eu, Fr, and Re.