
M E 320   Professor John M. Cimbala Lecture 33  
 

Today, we will: 
 

• Continue Chapter 10 – Approximate solutions of the N-S equation 
• Show how to nondimensionalize the N-S equation 
• Discuss creeping flow (flow at very low Reynolds number) 

 

B. Nondimensionalization of the Equations of Motion (continued) 
 Last lecture, we derived the nondimensional form of the continuity equation, 
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 Now let’s do the same thing with the Navier-Stokes equation. 
 
We begin with the differential equation for conservation of linear momentum for a 
Newtonian fluid, i.e., the Navier-Stokes equation. For incompressible flow, 

 
Equation 10-2 is dimensional, and each variable or property (ρ, V



, t, µ, etc.) is also 
dimensional. What are the primary dimensions (in terms of {m}, {L}, {t}, {T}, etc) of each 
term in this equation? 
  

Answer: {   } 
 
To nondimensionalize Eq. 10-2, we choose scaling parameters as follows: 
 

 
 

We define nondimensional variables, using the scaling parameters in Table 10-1: 
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To plug Eqs. 10-3 into Eq. 10-2, we need to first rearrange the equations in terms of the 
dimensional variables, i.e.,  
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Now we substitute all of the above into Eq. 10-2 to obtain 

 
Every additive term in the above equation has primary dimensions {m1L-2t-2}. To 
nondimensionalize the equation, we multiply every term by constant L/(ρV2), which has 
primary dimensions {m-1L2t2}, so that the dimensions cancel. After some rearrangement, 
 

 
 
 
 
 
 
 
Thus, Eq. 10-5 can therefore be written as 
 
 

 
 
Nondimensionalization vs. Normalization: 
Equation 10-6 above is nondimensional, but not necessarily normalized. What is the 
difference? 
• Nondimensionalization concerns only the dimensions of the equation – we can use any 

value of scaling parameters L, V, etc., and we always end up with Eq. 10-6. 
• Normalization is more restrictive than nondimensionalization. To normalize the 

equation, we must choose scaling parameters L, V, etc. that are appropriate for the flow 
being analyzed, such that all nondimensional variables (t*, *V



, P*, etc.) in Eq. 10-6 are 
of order of magnitude unity. In other words, their minimum and maximum values are 
reasonably close to 1.0 (e.g., -6 < P* < 3, or 0 < P* < 11, but not 0 < P* < 0.001, or -200 
< P* < 500). We express the normalization as follows: 
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Navier-Stokes Equation in Nondimensional Form: 
 

Euler number, 
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C. The Creeping Flow Approximation 
 

If we have properly normalized the Navier-Stokes equation, we can compare the 
relative importance of various terms in the equation by comparing the relative 
magnitudes of the nondimensional parameters St, Eu, Fr, and Re. 



Example: Terminal velocity of a settling air pollution particle 
Given: An air pollution particle of diameter 40 microns (40×10-6 
m) falls towards the ground. After a little while, it reaches terminal 
settling velocity Vt, which is its steady settling velocity in which 
aerodynamic drag force is balanced by its weight (minus buoyancy). 
The particle density is 1500 kg/m3, the air density is 0.840 kg/m3, and 
the air viscosity is 1.45×10-5 kg/(m s). 
 

To do: Calculate Vt in m/s. 
 

Solution:  
We assume creeping flow, and then will need to check afterwards if 
the Reynolds number is small enough or not. 

 

Air: ρ, µ 

P = Patm 

  Drag = DF
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D. Approximation for Inviscid Regions of Flow 
1. Definition of Inviscid Regions of Flow and the Euler Equation 

Definition: An inviscid region of flow is a region of flow in which net 
viscous forces are negligible compared to pressure and/or inertial forces. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let’s look at our nondimensionalized Navier-Stokes equation for this case: 
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