M E 320 Professor John M. Cimbala Lecture 34

Today, we will:

. Continue discussing inviscid regions of flow; the beloved Bernoulli equation (again)
. Discuss irrotational regions of flow

D. Approximation for Inviscid Regions of Flow (continued)
1. Definition of Inviscid Regions of Flow and the Euler Equation
Definition: An inviscid region of flow is a region of flow in which net
viscous forces are negligible compared to pressure and/or inertial forces.
We obtained the Euler Equation,
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2. The “Beloved” Bernoulli equation in Inviscid Regions of Flow

Recall from Chapter 5, we derived the Bernoulli equation as a degenerate form of the

energy equation for cases in which friction and other irreversible losses are negligible,
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It turns out that we can get this same equation by working on the Euler equation, and using

some vector identities. [See text for derivation, some of which is shown here.]
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Recognizing the vorticity vector, Eq. 10-13, the Euler equation, becomes
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where we have divided each term by the density and moved p within the
gradient operator, since density is constant in an incompressible flow.

We make the further assumption that gravity acts only in the —z-direction
(Fig. 10-18), so that

g = —gf — —gﬁ. = \?(—g:.) (10-16)
where we have used the fact that the gradient of coordinate z is unit vector K
in the z-direction. Note also that g is a constant, which allows us to move it

(and the negative sign) within the gradient operator. We substitute Eq. 10-16
into Eq. 10—15, and rearrange by combining three terms within one gradient
operator,
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Summary, equations for 2-D, steady, incompressible, irrotational flow in the x-y plane:
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