
M E 320   Professor John M. Cimbala Lecture 34  
 

Today, we will: 
 

• Continue discussing inviscid regions of flow; the beloved Bernoulli equation (again) 
• Discuss irrotational regions of flow 

 

D. Approximation for Inviscid Regions of Flow (continued) 
1. Definition of Inviscid Regions of Flow and the Euler Equation 

Definition: An inviscid region of flow is a region of flow in which net 
viscous forces are negligible compared to pressure and/or inertial forces. 

 We obtained the Euler Equation, 
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2. The “Beloved” Bernoulli equation in Inviscid Regions of Flow  
 

Recall from Chapter 5, we derived the Bernoulli equation as a degenerate form of the 
energy equation for cases in which friction and other irreversible losses are negligible, 
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It turns out that we can get this same equation by working on the Euler equation, and using 
some vector identities. [See text for derivation, some of which is shown here.] 

 
Recognizing the vorticity vector, Eq. 10-13, the Euler equation, becomes 

 

 

 



Summary, equations for 2-D, steady, incompressible, irrotational flow in the x-y plane: 
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