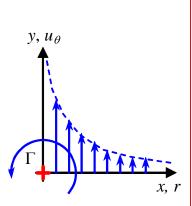
M E 320	Professor John M. Cim	bala Lecture 35
 Continue discussing the irrotational flow approximation and introduce superposition. Discuss some elementary planar irrotational flows (building block flows) Do some examples of superposition 		
E. The Irrotational Flow Approximation (continued)		
1. Introduction		
2. Equations of Motion for Irrotational Flow		
3. 2-D Irrotational Flow (continued)		
	ions of motion	
Summary, equations for 2-D, steady, incompressible, irrotational flow in the <i>x</i> - <i>y</i> plane:		
$\vec{\zeta} = \vec{\nabla} \times \vec{V} = 0$	$\rightarrow \vec{V} = \vec{\nabla}\phi \rightarrow \nabla^2\phi = 0; \nabla^2\psi = 0 \& \frac{P}{\rho}$	$+\frac{V^2}{2}+gz = \text{constant everywhere}$
Cartesian: $\nabla^2 \phi$	$= \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0, \text{ Cylindrical: } \nabla^2 \phi = \frac{1}{r \partial x^2}$	$\frac{\partial}{\partial r} \left(r \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} = 0$
Cartesian: $u = -\frac{1}{2}$	$\frac{\partial \psi}{\partial y} = -\frac{\partial \psi}{\partial x}$, Cylindrical planar (<i>r</i> -	θ plane): $u_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} \qquad u_{\theta} = -\frac{\partial \psi}{\partial r}$

b. Superposition


c. Line vortex

Example: Line Vortex – a third building block potential flow Given: A line vortex around the origin of strength Γ (Γ is also called the **circulation**). The flow is steady and 2-D in the *r*- θ plane, and its velocity field is given by

$$u_r = 0$$
 $u_{\theta} = \frac{\Gamma}{2\pi r}$

To do: Sketch streamlines and equipotential lines, and generate expressions for ψ and ϕ .

Solution:

Example: Rankine Half-Body

Given: A Rankine half-body is constructed using a horizontal freestream of velocity V = 5.0 m/s and line source at the origin of strength 2.5π m²/s. The stream function is

$$\psi = Vr\sin\theta + \frac{1}{2\pi}\frac{\dot{V}}{L}\theta$$

To do: Generate expressions for u_r and u_{θ} , and calculate the distance *a* (the distance between the origin and the stagnation point).

Solution: