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Today, we will: 
 

• Discuss isentropic, compressible, adiabatic flow in ducts 
• Discuss converging-diverging ducts, and introduce choking and shock waves 

 

2. One-Dimensional Isentropic Adiabatic Flow in Ducts 
a. Setup and equations 

 

 

Stagnation 
conditions: 

V ≈ 0 
T = T0  
P = P0  
h = h0  

 

Pressurized 
reservoir 

 

Goal: Predict P, T, r, V, Ma, 
etc. at some downstream 

location in the duct 
 

Duct with non-constant cross-sectional area 

 
 

For simplicity, we approximate the flow as isentropic (negligible friction and other 
irreversibilities) and adiabatic (no heat transfer from the air to the surroundings – insulated 
duct walls). 
 

Equations for isentropic, compressible, adiabatic flow of an ideal gas: 

• For any ideal gas: 20 11 Ma
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• For air (k = 1.4): 20 1 0.2MaT
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• Or, for air in terms of temperature, 
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Subsonic water nozzle Supersonic rocket nozzle 

 
 
 
 
 



For air: 
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But these are usually listed in terms of their inverses, i.e., 
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We also define a critical Mach number, Ma*, as 
*
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We plot all these as functions of Mach number in Appendix A-13 (for air): 

 
 

Should be r/r0 



Consider a stationary normal shock wave (as in a supersonic wind tunnel) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Consider instead a moving normal shock wave (as in a blast wave from an explosion) 

 
• The shock is moving into quiescent air (region 1) 
• In this frame of reference we define Ma1 = Vs/c1  
• The shock wave travels into region 1 at supersonic speed (Ma1 > 1) 
• The air behind the shock (region 2) follows at a slower speed 

 
The “dime analogy” (model the moving shock as rows of dimes that pile up when 
pushed by a rod or “piston” as sketched; three sequential times): 
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Comments: 
• The vertical red line is analogous to a shock wave: V1 = 0,  Vs > V2, r2 > r1 (there is 

sudden increase in density, and the “wave front” of dimes moves faster than the piston). 
• The dimes in region 1 don’t “know” anything is happening until the shock hits them. 
• Similarly in a shock wave in air, the air in region 1 does not “know” anything is 

happening until the shock wave hits it. 
 

Properties that increase 
across the shock: 
• P2 > P1  
• T2 > T1, thus: 
o c2 > c1  
o h2 > h1  

• r2 > r1  
• s2 > s1  
• A2

* > A1
*  

 

Properties that decrease 
across the shock: 
• Ma2 < Ma1  
• P02 < P01  
• r02 > r02  
• V2 < V1  

 

Properties that stay the same across the shock: 
• T02 = T01  
• h02 = h01  
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