M]	E 320 Professor John M. Cimbala	Lecture 03	
Тос	day, we will:		
 Continue our discussion about fluid properties from Chapter 2 Do some example problems – viscosity and surface tension 			
 D. Properties of Fluids (continued) 3. Other (miscellaneous) properties (continued) b. vapor pressure, P_v 			
	Pv = same by Psat (saturnin province in themes) Toble from Steam talles. Our book - A-3		
	E.g. C. Zu'C, Prat = 2.339 kPa - C provure of Water boil C	2.339 kPz <u>2</u> 20°C (vopuriže)	
	@ 100°C , Prot = 101.3 KPA (standard atm. pressure @ sea level		
	Mountain Sea leval Sea leval	ν 	
& CAVITATION - local boiling" of a liquid in region of low pressure in a fluid flow			
	Caritation bubbles form If P < Py C.g. C. Propellor In general in flows	we form caritation	
	Light of Pl (as V1 Pl i) noise Light of likely to cavitate 2) Jamaje	to surfaces	
		pitting)	

3. Other (miscellaneous) properties (continued) c. viscosity, μ, and kinematic viscosity, ν

"Viscosity" typically means "dynamic viscosity" μ , also called the "coefficient of viscosity". [Some authors call it the "molecular viscosity".]

Dimensions of μ are $\left\{\mu\right\} = \left\{\frac{m}{Lt}\right\}$. Typical units of μ are $\underline{kg/(m \cdot s)}$ [same as $(N \cdot s)/m^2$]. Greek "mu" Kinematic viscosity is defined as $v = \frac{\mu}{\rho}$, i.e., dynamic viscosity divided by density. Greek "rw" Dimensions of v are $\left\{v\right\} = \left\{\frac{L^2}{t}\right\}$. Typical units of v are \underline{m}^2/s .

Viscosity is a measure of the importance of friction in a fluid flow [kind of like a coefficient of friction].

Example: Consider the fully developed simple 1-D flow field of a viscous fluid sandwiched between two infinite parallel plates. The upper plate is moving and the lower plate is stationary.

and the incline angle is ϕ as sketched.

To do: Calculate *V* as a function of the other variables (stay in variable form). **Solution**:

Const velocity is no acch. ...
$$E \neq = 0$$

direction normal to Wall, N= W cost
.... II to ... Funce = W sing
But $T = M\frac{V}{h} - FUnc = T \cdot A$
 $\frac{M \vee A}{h} = W \sin \beta$
 $\frac{V = Wh \sin \beta}{M A}$
 $\frac{W + \sin \beta}{M A}$
M is a fine. of T, but type not a face of P
In genel, $M \uparrow A = T \uparrow$ in a ges
 $M \downarrow A = T \uparrow$ in a liquid
We are talking about Newtonian flowing $T = M \frac{du}{dy}$ holly only
 $for Newtonian flowing for Newtonian flowing for Newtonian flowing$

F.B.D. of half of bubble 6, x-dri_ 2Fx = 0 G K Pin r Pout t << R 65 2 Sware, $P_{in}(\pi R^2) = P_{out}(\pi R^2) + 2 G_5 \cdot 2\pi R$ CIRUmforne Ryht Lef+ $\Delta P = P_{in} - P_{out} = \frac{4G}{R}$ R Capillary Effect - When a liquid surface meets a well, The liquid curves to some contact angle \$ eg Water on glall eg merary on glass air air Ø WU l, wall Lign. J liguid "Nonwetting fluid" \$< 30° Wetting Fluid $\phi > 90^{\circ}$