M E 320

Professor John M. Cimbala

Lecture 04

Today, we will:

- Continue discussion about capillary action (Chapter 2)
- Begin Chapter 3 Pressure and Fluid Statics
- Discuss different kinds of pressure measurement (absolute, gage, vacuum)
- Derive the equation of fluid statics (hydrostatic pressure relation)
 - 3. Other (miscellaneous) properties (continued) d. surface tension, σ_s (continued)= Force per length the capillary effect

The combined effects of surface tension and <u>contact angle</u> lead to *capillary action* – the rise (or fall) of liquids in small-diameter capillary tubes as illustrated here:

We can predict the rise height h as a function of contact angle and surface tension, along with other parameters like inner tube diameter, liquid density, and gravitational constant:

Example: Prediction of capillary rise in a tube
Given: A glass capillary tube of inner diameter 1.3 mm is
pushed vertically into a cup of water. The contact angle between glass
and water is nearly 0°. The surface tension of the water is 0.073 N/m.
The equation for capillary rise is
$$h = \frac{4\sigma_{x}}{\rho g D}$$

To do: Calculate capillary rise h in units of cm.
Solution: Note that $\rho_{water} = 1000 \text{ kg/m}^{3}$ and $g = 9.807 \text{ m/s}^{2}$.
 $h = \frac{4G}{\rho g 0} \text{ cas } \phi = \frac{4(6 \circ 13 \frac{N}{N})}{(8 \circ 8 \frac{N}{m^{3}})(9.807 \frac{1}{r_{1}})(128 \circ 8)} \left(\frac{49 \frac{m}{N}}{N}\right)^{\frac{100}{m}} = 2.23037 \text{ cm}$
 $h = 2.3035 \text{ cm}$
 $h = 2.3 \text{ cm}$

II. PRESSURE AND FLUID STATICS (Chapter 3)

- A. Pressure, P
 - 1. Some basics

Pir a Scalar not + vector Pressure always acts normal is inward on any surface (real or "imaginary") Preyse cawy a surface force, not 2. Dimensions and units a body force

- Pira normal strall $\frac{u_{nib}}{E_{ng}} \rightarrow \frac{SI}{N/m^2} = \frac{N}{m^2} = \frac{Paycal}{E_{ng}} = \frac{Paycal}{E_{ng}$ Sp} = {Formal
- **B.** Types of Pressure Measurement 1 atm = 101,325 Pa = 101.325 kPa 1. Absolute pressure | P relative to a total vacuum P=Pak
 - 2. Gage pressure

3. Vacuum pressure $P_{Vac} = P_{alm} - P_{alm}$

Absolute

vacuum

Wel only When P< Patm [We typically do not we vacuum programe unless Prac >0, 1.e; P< Patm] Pgage

 $P_{abs} = 0$

= 14.696 1050

Absolute

vacuum

Page = P-Pam

2. Suches fires (the and one has a prevent)
Let
$$P = P_0$$
 @ cent of our element Propure = Fire/area
In X-direction, $Z = P_1 = P_1 \left(P_0 + \frac{\lambda P}{\lambda X_1} - \frac{\lambda P}{2} \right) dy dx$
 $T_1 = X - direction, Z = P_1 \left(P_0 + \frac{\lambda P}{\lambda X_2} - \frac{\lambda P}{2} \right) dy dx$
 $P_2 = P_1 = 0$ for the state of th

Similarly
y-dir
$$0 - \frac{2P}{dy} dxdy dz = 0$$
 $- \frac{dP}{dy} = 0$
In fluit station, P drey not visy in the y-direction !
 $2-dir: -pg(dxdy)dz = -\frac{dP}{dz}(dxdy)dz = 0$
 $\frac{dP}{dz} = -pg$
In fluit static, P drey vary in the $2-direction$
Bottom line - In fluit static, in a continuous fluit, P drey not
Vary horizontally, but it drey vary vertically
P goes up of you go down in a fluit
Since $\frac{dP}{dz} = \frac{dP}{dy} = 0$ $P \neq finc of x.y$
 $\therefore P = P(2) only $\frac{dP}{dz} = -Pg$
integrate $\int_{-1}^{2} dz$ (we total heriothing 3)
 $P_{2}-P_{1} = -Pg(2r-2i)$ Hydryshic Prover Relation;
 0 $P_{2}dw = P_{0}dwe + Pg(dz)$ R in some lipsily
in genty$