M E 320 Professor John M. Cimbala Lecture 10

Today, we will:
Finish our example problem — rates of motion and deformation of fluid particles
Discuss the Reynolds Transport Theorem (RTT)
Show how the RTT applies to the conservation laws
Begin Chapter 5 — Conservation Laws
Example: Rates of motion and deformation (Contlnuatlon of previous example)
Given: A two-dimensional velocity field in the x-y plane: |V = (u,v) = 3XI 3yj (w=0).

To do: Calculate (a) rate of translation, (b) rate of rotation, (c) linear ftram r@e (d) the shear
strain rate, and (e) the strain rate tensor.

Solution: We did Parts (a) and (b) already. Recall,

U=px  v= 2y

(a) The rate of translation is simply the velocity vector, V =ui +vj + wk . Here,
the rate of translation =V = 3xi —3yj .
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(b) The rate of rotation is a)— ——— +1(a_u_@J7 1fov_ou K . Here,
2\ oy oz 2\ 0z OX 2\ ox oy

the rate of rotation is , and the vorticity = £ =2&=0. This flow is irrotational.

(c) The three components of linear strain rate are
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(d) The three components of shear strain rate are
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(e) The strain rate tensor
We can conveniently combine the linear strain rates and the shear strain rates into one 9-
component matrix, which is actually a 3x3 tensor called the strain rate tensor:
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D. The Reynolds Transport Theorem (RTT) (Section 4-6)
1. Introduction and derivation

The Reynolds Transport Theorem (RTT) (Section 4-6)

Recall from Thermodynamics:

e A system [also called a closed system] is a quantity of matter of fixed identity. No mass
can cross a system boundary.

e A control volume [also called an open system] is a region in space chosen for study.
Mass can cross a control surface (the surface of the control volume).

e The fundamental conservation laws (conservation of mass, energy, and momentum)
apply directly to systems.

e However, in most fluid mechanics problems, control volume analysis is preferred
over system analysis (for the same reason that the Eulerian description is usually
preferred over the Lagrangian description).

e Therefore, we need to transform the conservation laws from a system to a control
volume. This is accomplished with the Reynolds transport theorem (RTT).

There is a direct analogy between the transformation from Lagrangian to Eulerian descriptions (for
differential analysis using infinitesimally small fluid elements) and the transformation from systems
to control volumes (for integral analysis using large, finite flow fields): «— ¢
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In both cases, the fundamental laws of physics (conservation laws) are known in the analysis
on the left (Lagrangian or system), and must be transformed so as to be useful in the analysis
on the right (Eulerian or control volume).




Another way to think about the RTT is that it is a link
between the system approach and the control volume
approach:

See text for detailed derivation of the RTT. Some

highlights:

o Let B represent any extensive property (like mass,
energy, or momentum).

e Letb be the corresponding intensive property, i.e.,
b = B/m (property B per unit mass).

e Our goal is to find a relationship between B or
bsys (property of the system, for which we know the
conservation laws) and Bcy or bey (property of the control vglume, which we prefer to
use in our analysis). "

e The results are shown below in various forms: x v__
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Control
volume

: . . - cs
For fixed (hon-moving and non-deforming) control volumes, w | v .
Contn volume é\'( CV lr_}“
obV -7 dA &; (4-41)

RTT, fixed CV:

Alternate RTT, fixed CV:

B —

3 J pb V-7 dA (4-42)
CS

Since the control volume is fixed, the order of integration or differentiation does not
matter, i.e., %J’ ... 1s the same as j%.. . Thus, the two circled quantities above are
Cv

CVv

equivalent for a fixed control volume.

For nonfixed (moving and/or deforming) control volumes,
dB., d

sys

RTT, nonfixed CV: e [ pbdV + [ pl)T{.-ﬁffA (4-44)
lcv

dt B dt _ Jcs /

Note: The only difference in the equations is that we replace V by V. in this
version of the RTT for a moving and/or deforming control volume.

where V. is the relative velocity, i.e., the velocity of the fluid relative to the control surface
(which may be moving or deforming),
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Relative velocity: V=V- Vg (4-43)
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We can also switch the order of the time derivative and the integral in the first term on the
right, but only if we use the absolute (rather than the relative) velocity in the second term on
the right, i.e.,
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Alternate RTT, nonfixed CV: ;ys =
a

; o
Z(ph)dV + | pbV-idA  (4-45)
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Comparing Egs. 4-45 and 4-42, we see that they are identical. Thus, the most general form of
the RTT that applies to both fixed and non-fixed control volumes is
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General RTT, nonfixed CV: =
dt

pbV-1i dA (4-53)
JCS
Even though this equation is most general, it is often easier in practice to use Eq. 4-44 for
moving and/or deforming (non-fixed) control volumes because the algebra is easier.
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Simplifications: ‘A’ ™My e — moyH, we Phere

e For steady flow, the volume integral dro In terms of relative velocity,

RTT, steady flow:
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pb V-1t dA (4-46)
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e For control volumes where there are well-defined inlets and outlets, the control
surface integral can be simplified, avoiding cumbersome integrations,
Approximate RTT for well-defined inlets and outlets:
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for each outlet for each inlet
Vilvme —

Note that the above equation is approximate, and may not always be accurate, but will be
used almost exclusively in this course, and is used generally in engineering analysis.
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