M E 320 Professor John M. Cimbala Lecture 17

Today, we will:

. Briefly discuss the control volume angular momentum equation and do an example
. Discuss dimensional analysis and similarity, and the method of repeating variables

F. Conservation of Angular Momentum
1. Equations and definitions
See derivation in the book, using the Reynolds transport theorem (RTT). We set

B =H =angular momentum =FxmV and b=B/m=FxV . The result is:

(FXV }p[] dA (6-47)
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which is stated in words as

The net flow rate of

The sum of all The time rate of change
angular momentum
external moments | = | of the angular momentum | + e Lo
: ' out of the contro
acting on a CV of the contents of the CV

surface by mass flow

We simplify the control surface integral for cases in which there are well-defined inlets and
outlets, just as we did previously for mass, energy, and momentum. The result is:
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[

(7 X V)pdV + E;Fxmfn = E:Fxm?: (6-50)
JCV oul in
Note that we cannot define an “angular momentum flux correction factor” like we did

previously for the kinetic energy and momentum flux terms. Furthermore, many problems we
consider in this course are steady. For steady flow, Eq. 6-50 reduces to:

Steady flow: ¥ M= (T X mV) — D (F X V) (6-51)
/ oul T n \
Net moment or Rate of flow of Rate of flow of
torque acting on = | angular momentum — | angular momentum
the control volume out of the control into the control
by external means volume by mass flow volume by mass flow

Finally, in many cases, we are concerned about only one axis of rotation, and we simplify Eq.
6-51 to a scalar equation,

SM = Z: rmV — > rmV (6-52)
(] h) n
Equation 6-52 is the form of the angular momentum control volume equation that we will
most often use, noting that r is the shortest distance (i.e., the normal distance) between the
point about which moments are taken and the line of action of the force or velocity being
considered. By convention, counterclockwise moments are positive.




2. Examples

See Examples 6-8 and 6-9 in the book. Example 6-8 is discussed in more detail here.
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FIGURE 6-39

Schematic for Example 6-8 and the
free-body diagram.

These moments are
moments acting on the CV.

The free-body diagram of the L-shaped pipe is given in Fig. 6-39. Noting
that the moments of all forces and momentum flows passing through point A
are zero, the only force that yields a moment about point A is the weight W
of the horizontal pipe section, and the only momentum flow that yields a
moment is the outlet stream (both are negative since both moments are in
the clockwise direction). Then the angular momentum equation about point A

becomes

M, —

EXAMPLE 6-8 Bending Moment Acting at the Base
of a Water Pipe

Underground water is pumped through a 10-cm-diameter pipe that consists
of a 2-m-long vertical and 1-m-long horizontal section, as shown in Fig. 6-39.
Water discharges to atmospheric air at an average velocity of 3 m/s, and the
mass of the horizontal pipe section when filled with water is 12 kg per meter
length. The pipe is anchored on the ground by a concrete base. Determine
the bending moment acting at the base of the pipe (point A) and the required
length of the horizontal section that would make the moment at point A zero.

SOLUTION Water is pumped through a piping section. The moment acting
at the base and the required length of the horizontal section to make this
moment zero is to be determined.
Assumptions 1 The flow is steady. 2 The water is discharged to the atmo-
sphere, and thus the gage pressure at the outlet is zero. 3 The pipe diameter
is small compared to the moment arm, and thus we use average values of
radius and velocity at the outlet.
Properties We take the density of water to be 1000 kg/m?3.
Analysis We take the entire L-shaped pipe as the control volume, and d|esigw
nate the inlet by 1 and the outlet by 2. We also take the x- and z-coordinates
as shown. The control volume and the reference frame are fixed.

The conservation of mass equation for this one-inlet, one-outlet, steady-
flow system is m; = m, = m, and V;, = V, = V since A, = constant. The
mass flow rate and the weight of the horizontal section of the pipe are

m = pA.V = (1000 kg/m*)[7(0.10 m)*/4](3 m/s) = 23.56 ke/s

W = mg = (12 kg/m)(1 m)(9.81 m.*’szl( ) = 1177 N

1 kg-m/s?
To determine the moment acting on the pipe at point A, we need to take the
moment of all forces and momentum flows about that point. This is a steady-
flow problem, and all forces and momentum flows are in the same plane.
Therefore, the angular momentum equation in this case is expressed as

@G

where r is the average moment arm, V is the average speed, all moments in
the counterclockwise direction are positive, and all moments in the clock-
wise direction are negative.

These moments are moments
due to angular momentum.

W = —r,mVy,




Solving for M, and substituting give
MA = ."|W - rszZ

IN
= (0.5 m)(118 N) — (2 m)(23.56 kg/s)(3 lm’s}(iﬁ)
1 kg-m/s~

= —82.5N-m

The negative sign indicates that the assumed direction for M, is wrong and
should be reversed. Therefore, a moment of 82.5 N-m acts at the stem of
the pipe in the clockwise direction. That is, the concrete base must apply a
82.5 N-m moment on the pipe stem in the clockwise direction to counteract
the excess moment caused by the exit stream.

The weight of the horizontal pipe is w = WL = 117.7 N per m length.
Therefore, the weight for a length of Lm is Lw with a moment arm of r;, = L/2.
Setting M, = O and substituting, the length L of the horizontal pipe that
would cause the moment at the pipe stem to vanish is determined to be

0=r|w—r_g_h"iv3 = OZIUZ)LW_FEMVZ

. [2rV, ff 2(2 m)(23.56 ke/s)(3 m/s) ( N ) g
T - - s ':,:‘
W B 117.7 N/m kg-m/s> =

Discussion Note that the pipe weight and the momentum of the exit stream
cause opposing moments at point A. This example shows the importance of
accounting for the moments of momentums of flow streams when performing
a dynamic analysis and evaluating the stresses in pipe materials at critical
cross sections.

or




IV. DIMENSIONAL ANALYSIS AND MODELING (Chapter 7)
A. Primary Dimensions:

{m} {L} {t} {1} {1} {C} {N}

mass, length, time, temperature, elec. current, intensity of light, amount of matter

IAll other dimensions can be formed by combination of these 7 primary dimensions|

c‘g,iﬁmeg : EI’W/ : Mccl)g < im‘i‘;g

Example: Primary dimensions — shear stress, force per unit length, and power
(a) Given: In fluid mechanics, shear stress 7 is expressed in units of N/m®.

To do: Express the primary dimensions of z, i.e., write an expression for {z}.

Solution: ‘o "l/p " )
GE i “@S‘ zTﬂ EC@K 2 im‘ Lk i

(3]

(b) Given: Ray is conducting an experiment in which quantlty a has dimensions of force per
unit length.

To do: Express the primary dimensions of a, i.e., write an expression for {a }.
Solution:

R AT EA R

(c) Given: Power W has the dimensions of energy per unit time.
To do: Write the dimensions of power in terms of primary dimensions.

Solution: Eﬂfij = Bre X Whaw
P"W = EM/)y /heiy,

W - TR <
WY = 1{“&1 6= £




B. Dimensional Homogeneity

IAll additive terms in an equation must have the same dimensions| %
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3. The Method of Repeating Variables

There are 6 steps that comprise the method of repeating variables. These are listed concisely
in Fig. 7-22 in the text, as repeated below:

Step |: List the parameters in the problem \R: = nnn&w\w}\ ‘Dbﬂ«”‘d‘(f

and count their total number n.

Step 2: List the primary dimensions of each

of the n parameters. Step 4 is often the most difficult
or mysterious step. There are
Step 3: Set the reduction j as the number guidelines provided in Table 7-3,
of primary dimensions. Calculate &, but it takes practice to know
the expected number of IT's, which repeating variables to
=R ] choose wisely.

Step 4: Choose j repeating parameters.

Step 5: Construct the & II's. and manipulate
as necessary.

Step 6: Write the final functional relationship
and check your algebra.

The final functional relationship is given as the dependent IT, I, as a function of the
independent IT’s, I1,, I3, ... , Iy, i.e., |IT, = f (I1,,I1;, ... IT, ) A 6wl

Guidelines for choosing the repeating variables in Step 4 of the method of repeating
variables: (See Table 7-3 in the text for more details):

1. Never pick the dependent variable. 5. Never pick two parameters with

Otherwise, it may appear in all the the same dimensions or with
IT's, which is undesirable. dimensions that differ by only
2. The chosen repeating parameters an exponent.
must not by themselves be able 6. Whenever possible, choose
to form a dimensionless group. dimensional constants over
Otherwise, it would be impossible dimensional variables so that
to generate the rest of the II’s. only one II contains the
3. The chosen repeating parameters dimensional variable.
must represent all the primary 7. Pick common parameters since
dimensions in the problem. they may appear in each of the II's.
4. Never pick parameters that are 8. Pick simple parameters over
already dimensionless. These are complex parameters whenever

IT's already, all by themselves. possible.
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4. Examples
Given: The drag force Fp on a car is a function U p (
To do: Express this relationship in terms of
method of repeating variables.
Vil

Example: Dimensional analysis — drag on a
car v A = frontal area
of four variables: air velocity V, air density
p, air viscosity g, and the length L of the car.
nondimensional parameters. < L >
Solution: We follow the six steps for the
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Guidelines for Manipulating the IT Parameters

There are several guidelines for manipulating the IT parameters. These guidelines are listed
concisely in Table 7-4 in the text, as summarized below: See Table 7-4 for more details.

1. We may impose a constant
(dimensionless) exponent on

a IT or perform a functional 4. We may use any of guidelines
operation on a IL. 1 to 3 in combination.

2. We may multiply a IT by a 5. We may substitute a dimensional
pure (dimensionless) constant. parameter in the II with other

3. We may form a product (or quotient) parameter(s) of the same dimensions.
of any II with any other II in the 7
problem to replace one of the II's. Sy Ak ,l\ (m\ e LZ

The goal is to get each IT into a form that looks like one of the common named, established

nondimensional parameters that are listed in Table 7-5 in the text. Some of the most popular

and often-used ones are listed below. A more exhaustive list is given in the text.

Name Definition Ratio of Significance

icti Wall friction fi
Darcy friction factor all Iriction 1orce

Inertial force

Drag force

Drag coefficient

Dynamic force

%4 ] V2 Inertial force
Froude number Fr = ——| sometimes — —=
VgL gL Gravitational force
. o ' Lift force
Lift coefficient Cy == LZ .
2pVZA Dynamic force
: 1% Flow speed
Mach number Ma (sometimes M) = —
c Speed of sound
VL. VI Inertial f
Reynolds number Re = EE A M
w v Viscous force

A\

Reynolds number is the most important nondimensional parameter in fluid mechanics.

b : ' 5 Enthalpy
Specific heat ratio k (sometimes y) = —
Cy Internal energy
Characteristic flow time
Strouhal humber St (sometimes S or Sr) = fi - —
v Period of oscillation

i pV-:L Inertial force
(o2 Surface tension force

5

Weber number We




