

7. Examples

Example: Hydrodynamic entrance length

Given: Water at $10.0 \,^{\circ}C$ flows at a steady volume flow rate of $0.0100 \,\text{m}^3$ /s through a pipe of diameter 5.00 cm. The pipe is 100 m long, and the flow is fully developed through the entire section of pipe.

To do:

(a) Calculate the pressure drop if roughness height $\varepsilon = 0.00050$ cm.

(b) Calculate the pressure drop if roughness height $\varepsilon = 0$ (hydrodynamically smooth pipe). **Solution**:

· Cont. of energy in head form

$$\frac{P_{1}}{Pg} + \alpha_{1} \frac{V_{2}}{2g} + \frac{V_{1}}{2} + h_{pfmpu} = \frac{P_{2}}{pg} + \alpha_{2} \frac{V_{2}}{1g} + \frac{V_{1}}{2} + h_{pfmpu} e + h_{1}$$

$$\frac{P_{1}}{d_{1} = \alpha_{1}} \frac{V_{1} + V_{1}}{d_{1} = \alpha_{1}} \frac{V_{1} + h_{pfmpu}}{d_{1} = \alpha_{1}} \frac{V_{1} + h_{pfmpu}}{d$$

To has
$$f \rightarrow Re = \frac{p \vee p}{\mu} = \frac{(993.7 \frac{1}{7} \frac{1}{7} \frac{1}{9})(1.092357\frac{1}{7})(0.050 \text{ A})}{1.307 \times 10^{3}} = 1.9471 \times 10^{5}}$$

Definiting tridulant
(a) $\rightarrow \frac{C}{D} = \frac{0.0050 \text{ cm}}{3.000 \text{ cm}} = 0.001 = \frac{7}{0}$
· Moody durk $\rightarrow CRe = 1.95 \times 10^{5} \frac{5}{0} = 0.001 \rightarrow \frac{1}{7} \approx 0.0210$
· Or Calebrok eq. - rec example file on Excel EES
Excel $\rightarrow \frac{1}{2} = 0.02107$, EES calebrook $\rightarrow \frac{1}{7} = 0.02107$
EES $- Moody Cheft (Re, 5/6) \frac{1}{2} \frac{1}{2} (0.02107) \frac{1}{2} \frac{1}{2}$

