M E 320 Professor John M. Cimbala Lecture 22

Today, we will:
Continue discussing minor losses in pipe flows, and do some example problems

Recall, major and minor head losses:

2
Major: |h, o = f%\zl—g where | f = fnc(Re,%) from Moody chart or Colebrook equation.
VZ
Minor: [ e = KLEWhere K. = minor loss coefficient, from tables and charts.
: LV?® V?
In the head form of the energy equation, [h, = > h_ o+ D h e = DO f BEJF > KLE'
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Example: Major and minor losses
Given: Water (p = 998. kg/m®, 1= 1.00 x 10" kg/m-s) flows at a steady average
velocity of 6.45 m/s through a smoath pipe of P T T T T T T T T T T T T T T
diameter 2.54 cm. The flow is fully developed :@ Dl
through the entire section of pipe. The total pipe ===

length is 10.56 m, and there are two elbows, each

1
1
with K, = 0.90. i Control
1
1
1

To do: \preNeri ol

(a) Calculate the totalyhead loss in meters through
this section of piping due to both major and minor losses.

Solution:
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Example: Major and minor losses, calculation of turbine shaft power

Given: Water (p = 998. kg/m®, @ Vizo Pz Cut,

1£=1.00 x 10° kg/m-s) flows ~ p==S5--2- ,
from one large reservoir to
another, and through a turbine

1

1

] Control volume
as sketched. The elevation I x_ N 2
difference between the two : < ngo§ M

:

1

1

1

1

1

L

reservoir surfaces is Hgoss =
120.0 m. The pipe is 5.0 cm
I.D. cast iron pipe. The total
pipe length is 30.8 m. The

entrance is slightly rounded, = B N

Turbine

o . A
the exit is sharp. There is one . _ Jf)
regular flanged 90-degree P“\‘ 6 Whie Wiarbine shaft \|| T A
1

elbow, and one fully open ¥ Conba) velume

flanged angle valve. The
turbine is 81% efficient. The volume flow rate through the turbine is 0.0045 m*/s.

—

To do: Calculate the shaft power produced by the turbine in units of kilowatts.

Solution:

e First we draw a control volume, as shown by the dashed line. We cut through the surface of both
reservoirs (inlet 1 and outlet 2), where we know that the velocity is nearly zero and the pressure
is atmospheric. We also slice through the turbine shaft. The rest of the control volume simply
surrounds the piping system.

e We apply the head form of the energy equation from the inlet (1) to the outlet (2):

Pl—PZ—Patm
h h h ”}
FonfrineFonfonnn 0
V1—V2

W

— turbine shaft
turbine,e .
turbinemg

reference velocity is the same for all the major and minor losses (the pipe diameter is constant
throughout), we may use the simplified version of the equation for h, i.e., Eq. 8-59:

e But by definition of turbine efficiency, |h where M = pV . Also, since the

? L
h = —( f—+ z K. |} Therefore, we solve the energy equation for the desired unknown,
2g\ D

- ; V[, L
namely, turbine shaft power, W, .« st = Zrurpine2V 9 { H gross — E( f D + Z K, ﬂ . This is our

answer in variable form, but we still need to calculate the values of some of the variables.

The rest of this problem will be solved in class.
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Example: Major and minor losses, iterating to calculate the flow rate

Given: Water (p = 998.
kg/m®, 11=1.00 x 107
kg/m-s) flows by gravity
alone from one large tank
to another, as sketched.
The elevation difference
between the two surfaces is
H =35.0 m. The pipe is 2.5
cm 1.D. with an average
roughness of 0.010 cm.
The total pipe length is
20.0 m. The entrance and
exit are sharp. There are
two regular threaded 90-
degree elbows,andone L

fully open threaded globe valve.

To do: Calculate the volume flow rate through this piping system.

Solution:

e First we draw a control volume, as shown by the dashed line. We cut through the surface of
both reservoirs (inlet 1 and outlet 2), where we know that the velocity is nearly zero and the
pressure is atmospheric. The rest of the control volume simply surrounds the piping system.

e We apply the head form of the energy equation from the inlet (1) to the outlet (2):

Pl—PZ— atm
/ZZJralZZJrZ + N = /ZZ+0¢2/ZZ+Z + Nyginee +h
Vl—V2~O

Therefore, the energy equation reduces to |h, =z, -z, = H

e Next, we add up all the irreversible head losses, both major and minor. Since the reference
velocity is the same for all the major and minor losses (the pipe diameter is constant
throughout), we may use the simplified version of the equation for h,

2 2
n— hL:(fL+ZKLjV_’& Re= PPV I\ -y 7D\ & _0.010em _ 5 hoa
C D 29 Y7 4 |ID 25cm

e We also need either the Moody chart or one of the empirical equations that can be used in
place of the chart (e.g., the Colebrook equation).

The rest of this problem will be solved in class. 1(
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EES Solution for Example Problem — Major and Minor Losses in a Piping System

Here is exactly what | typed into the main “Equations Window” of EES:

"EES Solution for the class example problem - major and minor losses in a piping system
J. M. Cimbala, February 2005"

"Constants:"
h L=35
rho = ggg[?ﬂg/m@] Note: We could_have used the EES function
mu = 1.00e-3 [kg/(m*s)] “MoodyChart” instead of the Colebrook
E:gdog?ngr]“] equation; i.e.,
Sigmak = 13.35 f = MoodyChart(Re,eps_by D)

which gives slightly different answers.
"Equations:"

h_L = (f*L/D + SigmaK)*(V 2)/(2*g#

Re = rho*D*V/mu
eps_by D =0.004
V_dot = V*PI*(D"2)/4

"Colebrook equation:"

1/sqrt(f) = -2.0*log10(eps_by_ D/3.7 + 2.51/(Re*sqrt(f)))

"To solve, click on Calculate and then Solve. Note that it does not converge unless you change the limits and guesses
in Options-Variable Info'

"Note that g# is the gravitational constant, pre-defined by EES"

Here is what the “Options-Variable Info” chart looks like:

E Variable Information

[ si .
[” Show string variables
Variable Im Lower Upper Display Units Key Comment
D 1 -infinity infinily || A3 |N/m
eps_by D 1 -infinity infimdy || A3 | N
f 0.02 1.0000E-03 1.0000E-01 | A 3 |N
h L 1 -infinity infinidy || A3 |N/m
L 1 -infinity infinidy || A3 [N/ m
mu 1 -infinity infinity || A 3 | N kg/(m*s)
Re 10000 | 4.0000E+03 infinity [ A 3 N
rho 1 0.0000E+00 infinity (A3 | N|kgfm"3
Sigmakl 1 0.0000E+00 infinity [ A3 (N
v 1 0.0000E+00 infinity [ A 3 N m/s
W _dot 1 0.0000E+00 infinity [ A 3 N m*3/s

Note: | had to change some of the initial guesses and some
of the lower and upper limits in order for EES to converge

on a solution. This takes some trial and error.

Apply Print
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The Formatted Equations window looks like this (the equations appear in much more readable format):

&2 Formatted Equations

EES Solution for the class example problem - major and minor losses in a piping system
J. M. Cimbala, February 2005

Constants:
hy = 35 [m]

p = 998 [kg/m?]
uo= 0001 [kg/(m*s)]
D = 0025 [m]

L = 20 [m]
Sigmak = 1335
Equations:

VE

— _  Motethat g# is the gravitational constant, pre-defined by EES
2 - 9807 [mis]

L
hy = |- — Si K-
L L + Sigma
W
EPStyn = 0.004

vo= V-3

Colebrook equation: 1 5.y EPSty.D 251

N 093.?+Re-\!f_

To solve, click on Calculate and then Solve. Mote that it does not converge unless you change the limits and guesses in Options-Variable Info

Finally, Calculate and Solve yields the solution:

D=0.025 [m]
eps_by D=0.004
f=0.02943

h L=35[m]
L=20 [m] This is our final result, i.e., the volume flow rate through
mu=0.001 [kg/(m™s)] the pipe. We can verify that all the variables are correct,

Re=107627 and are the same as those calculated by “hand”, i.e.,
rho=998 [kg/m"3]
SigmaK=13.35 V_dot =2.12 x 10° m®/g|
V=4.314 [m/s]

\V_dot=0.002117 [m"3/s]




