## Today, we will:

- Discuss dimensional analysis of turbines
- Do an example problem dimensional analysis with turbines
- Discuss piping networks how to deal with pipes in series or in parallel

## b. Dimensionless parameters in turbine performance

We perform exactly the same dimensional analysis for turbines as we did for pumps. Result:

Dimensionless Parameters:  $C_Q = \frac{V}{\omega D^3}$ 

$$C_{Q} = \frac{\dot{V}}{\omega D^{3}}$$

$$C_H = \frac{gH}{\omega^2 D^2}$$

$$C_{H} = \frac{gH}{\omega^{2}D^{2}}$$

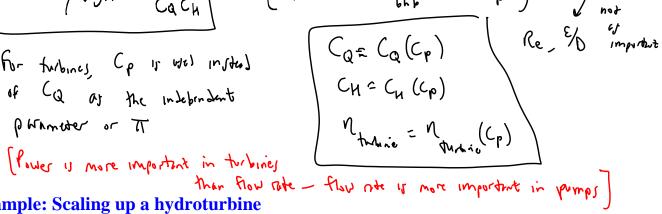
$$C_{P} = \frac{bhp}{\rho\omega^{3}D^{5}}$$

Capacity coefficient

Head coefficient

Power coefficient





## Example: Scaling up a hydroturbine

An existing hydroturbine (A): Fluid is water at  $20^{\circ}$ C,  $D_A = 1.95$  m,  $\dot{n}_A = 120 \text{ rpm}, bhp_A = \underline{220 \text{ MW}}, \text{ and } \dot{V}_A = 335 \text{ m}^3/\text{s} \text{ at } H_A = 72.4 \text{ m}. \text{ We are designing a new}$ turbine (B) that is geometrically similar, still uses water at 20°C, and  $\dot{n}_B = 120$  rpm, but  $H_B = 97.4 \text{ m}$ . [Dam B has a higher gross head available than Dam A.]

(a) Calculate  $D_B$  and  $V_B$  for operation of turbine B at a homologous point.

(b) Calculate  $bhp_B$  and estimate the turbine efficiency of both turbines.

## Lynamically similar

(a) At homologous points, the two turbines are dynamically similar. Apply the affinity laws:

$$C_{H,A} = \frac{gH_A}{\omega_A^2 D_A^2} = C_{H,B} = \frac{gH_B}{\omega_B^2 D_B^2} \rightarrow \text{solve for } D_B = D_A \left(\frac{\omega_A}{\omega_B}\right) \sqrt{\frac{H_B}{H_A}} = D_A \left(\frac{\dot{n}_A}{\dot{n}_B}\right) \sqrt{\frac{H_B}{H_A}}$$
Plug in numbers:

Equation contents, coefficients confirm that confirms are confirmed as  $V_A = V_A = V$ 

(b) Similarly, 
$$C_{P,A} = \frac{bhp_A}{\rho_A \omega_A^3 D_A^5} = C_{P,B} = \frac{bhp_B}{\rho_B \omega_B^3 D_B^5} \rightarrow \frac{bhp_B}{\rho_B \omega_B^3 D_B^5} \rightarrow \frac{bhp_B}{\rho_A} = \frac{bhp_A}{\rho_A} \left(\frac{\rho_B}{\dot{n}_A}\right)^3 \left(\frac{D_B}{\dot{n}_A}\right)^5$$
Plug in numbers: equate power coeffs 
$$\frac{bhp_B}{\rho_B \omega_B^3 D_B^5} \rightarrow \frac{bhp_B}{\rho_B \omega_B^3 D_B^5} \rightarrow \frac{bhp_B}{\rho_A} = \frac{bhp_A}{\rho_A gH_A \dot{V}_A} = \frac{220,000,000 \text{ W}}{\left(1000 \frac{\text{kg}}{\text{m}^3}\right) \left(9.81 \frac{\text{m}}{\text{s}^2}\right) 72.4 \text{ m} \left(335 \frac{\text{m}^3}{\text{s}}\right)} \left(\frac{\text{N} \cdot \text{m}}{\text{W} \cdot \text{s}}\right) \left(\frac{\text{kg} \cdot \text{m}}{\text{s}^2 \cdot \text{N}}\right) = 92.5 \%$$

$$\eta_{\text{turbine},A} = \frac{bhp_{A}}{\rho_{A}gH_{A}\dot{V_{A}}} = \frac{220,000,000 \text{ W}}{\left(1000\frac{\text{kg}}{\text{m}^{3}}\right)\left(9.81\frac{\text{m}}{\text{s}^{2}}\right)72.4 \text{ m}\left(335\frac{\text{m}^{3}}{\text{s}}\right)\left(\frac{\text{N} \cdot \text{m}}{\text{W} \cdot \text{s}}\right)\left(\frac{\text{kg} \cdot \text{m}}{\text{s}^{2} \cdot \text{N}}\right) = 92.5\%$$

$$\eta_{\text{turbine},B} = \frac{bhp_B}{\rho_B g H_B \dot{V}_B} = \frac{461,820,979 \text{ W}}{\left(1000 \frac{\text{kg}}{\text{m}^3}\right) \left(9.81 \frac{\text{m}}{\text{s}^2}\right) 97.4 \text{ m} \left(522.728 \frac{\text{m}^3}{\text{s}}\right) \left(\frac{\text{N} \cdot \text{m}}{\text{W} \cdot \text{s}}\right) \left(\frac{\text{kg} \cdot \text{m}}{\text{s}^2 \cdot \text{N}}\right) = 91.5 \%$$

$$1000 \frac{\text{kg}}{\text{m}^3} \left(9.81 \frac{\text{m}}{\text{s}^2}\right) 97.4 \text{ m} \left(522.728 \frac{\text{m}^3}{\text{s}}\right) \left(\frac{\text{N} \cdot \text{m}}{\text{W} \cdot \text{s}}\right) \left(\frac{\text{kg} \cdot \text{m}}{\text{s}^2 \cdot \text{N}}\right) = 91.5 \%$$

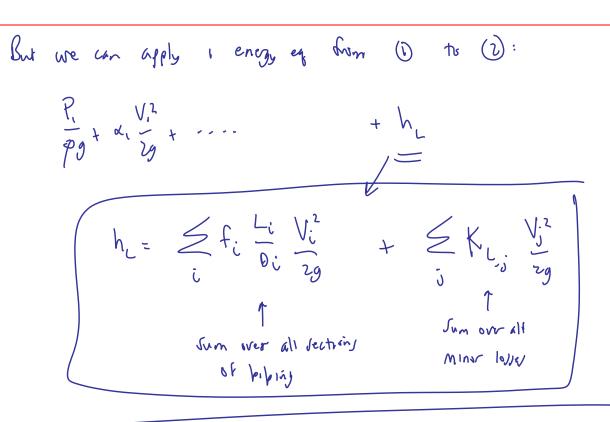
$$1000 \frac{\text{kg}}{\text{m}^3} \left(9.81 \frac{\text{m}}{\text{s}^2}\right) 97.4 \text{ m} \left(522.728 \frac{\text{m}^3}{\text{s}}\right) \left(\frac{\text{N} \cdot \text{m}}{\text{W} \cdot \text{s}}\right) \left(\frac{\text{kg} \cdot \text{m}}{\text{s}^2 \cdot \text{N}}\right) = 91.5 \%$$

$$1000 \frac{\text{kg}}{\text{m}^3} \left(9.81 \frac{\text{m}}{\text{s}^2}\right) 97.4 \text{ m} \left(522.728 \frac{\text{m}^3}{\text{s}}\right) \left(\frac{\text{N} \cdot \text{m}}{\text{W} \cdot \text{s}}\right) \left(\frac{\text{kg} \cdot \text{m}}{\text{s}^2 \cdot \text{N}}\right) = 91.5 \%$$

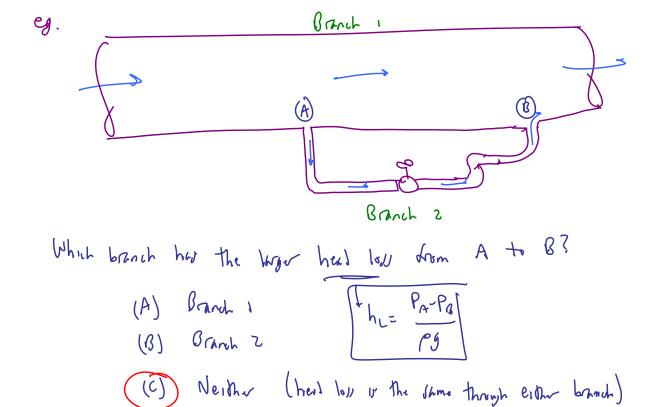
(A



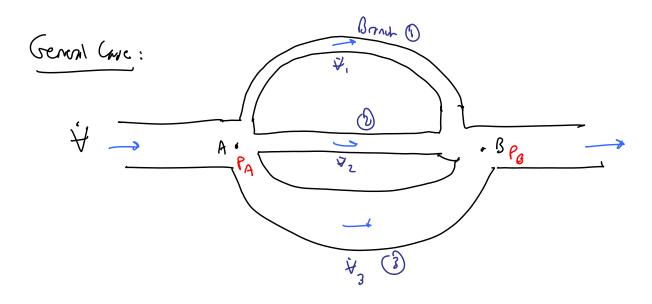
VA # VR # Vc Jince DA # DB # Dc



2. Piper in Parallel - More distribut since is not the same in

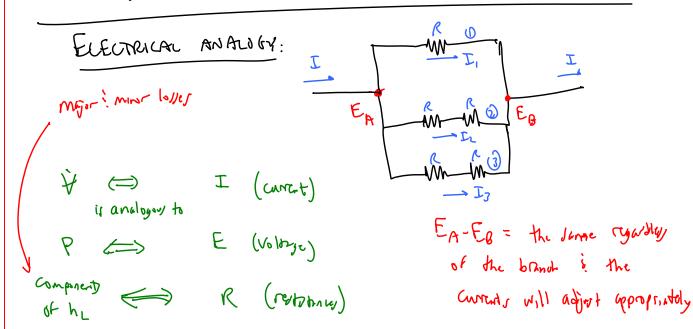


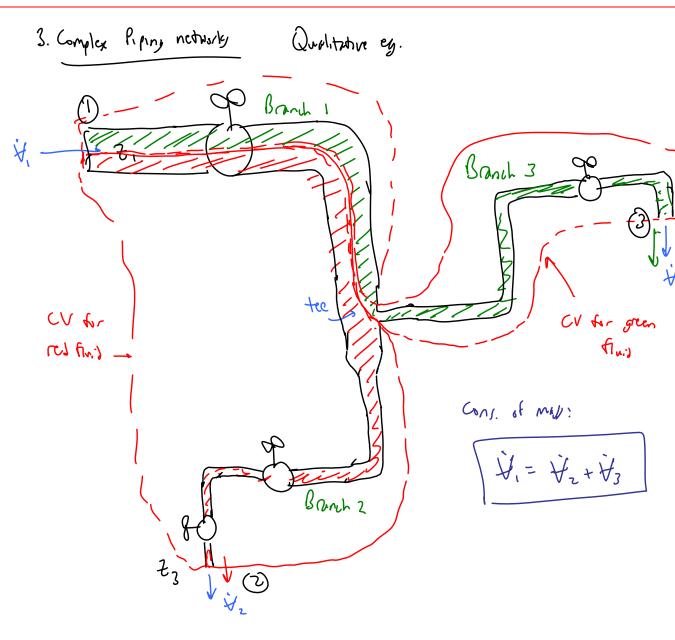
H will adjust itself such that DP is the same through both branches. — Franch 2 K Franch 1



But Since Par PB is the same, Same head by through any

I's will automatically adjust to the "correct" I such that there egs are met





Consist energy in hear form -> Apply to the water flowing through

Browch 1 \$\frac{1}{2}\$ separately from 1 \$\frac{1}{2}\$ 3

fun 0 to 0):

Pr + x, 
$$\frac{V_1^2}{2g}$$
 + 2, + h proper =  $\frac{P_2}{P_5}$  +  $\alpha_2 \frac{V_2^2}{2g}$  +  $\overline{t_2}$  + h proper + h 1402

From 0 to 3:

Notes: . he includes head losses through Branchy i i. 2

- · h\_1 to 3 .. " " " 1 & 3
- " Must we appropriate V's (V, Vz, or V3) to calculate Re Through each branch
- · Each branch how a different V, Re, E/D, f (Moods chart), EK, etc.
- · Think of the red fluid at two pipes in sever, Branchs
  - Think of the green fluid as " " "

To solve - must solve a set of many simultaneous eg's

 $Re_1 = \frac{pV_1D_1}{M}$   $Re_2 = \frac{pV_2D_2}{M}$   $Re_3 = \frac{pV_3D_3}{M}$ 

f, = moody chan (Re, Eyo.) fz = moody chan (Rez, Ez/Oz)

for moods obort (Re3, 83/03)

There will be \$Ki, \$Ki, \$Ki, hi, hi, hi, hi,

 $\dot{Y}_{1} = \frac{\pi 0^{2}}{4} V_{1}$   $\dot{Y}_{2} = \frac{\pi 0^{2}}{4} V_{2}$   $\dot{Y}_{3} = \frac{\pi 0^{3}}{4} V_{3}$ 

A MUST POLVE ALL OF THESE EQUATIONS SIMULTANEOUSLY (I W. EES)