
M E 320   Professor John M. Cimbala Lecture 27  
 

Today, we will: 
 

• Do some examples of complex piping networks (multiple pipes with branches, etc.) 
• Briefly mention flow meters and velocity measurement 

 

Complex piping networks – Summary: 
• For each section of pipe, need to write a separate equation for Re, f, hL, etc. 
• For pipe sections in series, 1 2 3= =V V V . 
• For splitting pipe sections (1 splitting into 2 and 3), 1 2 3= +V V V  
• Write a separate energy equation from inlet to outlet for each branch of the network. 
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When all equations are written, solve simultaneously for all unknowns. If you do everything 
right, there should be the same number of equations as unknowns. 
 
 
 
 
 
 
4. Examples 



Example: Taking a Shower and Flushing a Toilet (E.g. 8-9, Çengel and Cimbala) 
Given: This is a very practical everyday example of a parallel piping network! You are 
taking a shower. The piping is 1.50-cm coper pipes with threaded connectors as sketched. 
The gage pressure at the inlet of the system is 200 kPa, and the shower is on. The hot water is 
from a separate supply – only the cold water system is shown here. 

 
To do: 
(a) Calculate the volume flow rate 2V  through the shower head when there is no water 
flowing through the toilet. 
(b) Calculate the volume flow rate 2V  through the shower head when someone flushes the 
toilet, and water flows into the toilet reservoir. 
Solution: (copied from the textbook) 

  
 
 
 
 
 
 
 

 

We consider only the cold water line. The hot 
water line is separate, and is not connected to the 
toilet, so the volume flow rate of hot water 
through the shower remains constant. The cold 
water, however, is affected by flushing the toilet. 

This is a simplifying assumption 
that may or may not be valid. We 
should check the validity later. 



  

  

Part (a) is not a parallel system since no flow through the toilet. 

P2 = Patm, and therefore P1 – P2 = P1,gage. 

We neglect the velocity heads in the 
energy equation. Alternatively, if V1 
= V2, then these two terms cancel 
each other out. 

Only one Re and one 
Colebrook equation for 
Part (a) 



 

 

 

 

Answer to part (a) – no toilet flushing 

This is where 
EES comes in 
handy – 
solving all 
these 
simultaneous 
equations! 
(12 equations 
and 12 
unknowns) 

Now we need 
three 
Colebrook 
equations – 
one for each 
branch! 



  

 
  
 
 
 
 
 

Answer to part (b) – with toilet flushing



EES Solution – Toilet Flushing Example Problem 
Part (a) EES Equation window: 

 
Part (a) EES Solution: 

 



Part (b) EES Equation Window: 

 
Part (b) EES Solution: 

 



Example: Parallel Pipe Network and Pump Bypass System 
 

Background:  In some applications (e.g., nuclear reactor cooling), it is critical that the 
volume flow rate of a fluid remains constant, regardless of head changes in the system 
downstream (within specified limits, of course). One method of ensuring a constant volume 
flow rate is to install an oversized pump to drive the flow. A bypass line is then installed in 
parallel with the pump so that some of the fluid (bypass volume flow rate bV ) recirculates 
through the bypass line as shown. Based on feedback from a downstream volume flowmeter, 
the bypass valve is then adjusted by a computer to control both bV  and the volume flow rate 
through the pump pV  such that the volume flow rate dV  downstream of the system remains 
constant.  
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Given:  In this particular case, water (ρ = 998 kg/m3, µ = 1.00 × 10-3 kg/m·s) needs to be 
supplied at a constant downstream volume flow rate of dV  = 0.20 m3/s. The pump’s 

performance curve is given by the pump manufacturer as ( )2
pump,u,supply ph a b c= − V  where a = 

100 m, b = 1.0, and c = 1.0 s2/m6. The units of hpump,u,supply are [m] and the units of pV  are 
[m3/s]. The pump line has a diameter Dp = 0.50 m and length Lp = 3.0 m, while the bypass 
line has a diameter Db = 0.50 m and length Lb = 5.0 m.  All pipes have roughness ε = 0.002 m. 
Minor losses in the system include two flanged 90o bends (KL = 0.20 each) and a gate valve 
(0.2 < KL < ∞) in the bypass line, and two flanged tees (line flow KL = 0.20, and branch flow 
KL = 1.00).   
 

To Do: Calculate and plot how volume flow rates ,  ,  and p b dV V V  vary with the minor loss 
coefficient of the valve as it goes from fully open (KL,valve = 0.20) to fully closed (KL,valve → 
∞). 
 

Solution:   
• First, as always, we need to pick a control volume. In this case, we need two control 

volumes since there are two branches in the parallel pipe system. After careful thought 
(and experience), we decide that the most appropriate control volumes go between 
points (1) and (2) as labeled on the above sketch. We re-draw the flow system 



including the two control volumes. In this parallel pipe system it is useful to imagine 
that the fluid in the bypass line (CVb) is colored red, while that in the pump line (CVp) 
is colored blue. This is an artificial separation of the fluid into the two branches since 
the fluid mixes because of turbulence. However, it is useful as an aid to drawing the 
control volumes. Note that CVp has its inlet at (1) and its outlet at (2), while CVb has 
its inlet at (2) and its outlet at (1). 
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• We apply conservation of mass at either tee:  
p b d= +V V V  

Note: This equation couples the two control volumes together. Other than this, we treat 
the two control volume separately in the analysis below. 
• We apply the head form of the energy equation for CVp from inlet (1) to outlet (2), 
assuming that the flow at both (1) and (2) is fully developed turbulent pipe flow so that 

both velocity and kinetic energy correction factor are the same at (1) as at (2): 
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Or,  2 1
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• We next apply the head form of the energy equation for CVb from inlet (2) to outlet 
(1), recognizing again that V1 = V2 and α1 = α2, and that there is no pump in this CV: 
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• Combining the above two results, we get pump,u,system , ,L b L ph h h= + . 

z1 = z2

Note: P2 − P1 is the 
same regardless of 

whether we are 
considering the pump 
line or the branch line. 

We call this hpump,u,system since it is the required 
pump head for the given piping system. 

V1 = V2 and α1 = α2 



• We note that since the velocities (and therefore the Reynolds numbers) in the pump 
line and the bypass line are not the same, we therefore need two Colebrook or 
Churchill equations to solve the problem, one for the pump line and one for the bypass 
line. 

• We write all the equations, and solve them simultaneously [I used EES]. 
 
Here is what I typed into the main “Equations Window” of EES: 
 

 
 



I created a parametric table, and selected four of the variables (Table-New Parametric Table): 
 

 
 

Finally, I plotted all three of the dependent volume flow rates as functions of KL,valve: 
 

 

The rest of the 
values are 
automatically 
calculated and filled 
in when you click 
on the green arrow 
at the upper left. 

I specified the values 
of KL,valve, ranging 
from the minimum of 
0.2 (fully open gate 
valve) to a very large 
number (valve nearly 
closed). 

Verify: dV  
remains constant 
regardless of the 
valve setting. 

When the valve is 
nearly closed, there is 
hardly any flow 
through the bypass line 
– nearly all the flow is 
through the pump line. 

When the valve is fully 
open, we get the 
maximum flow rate 
through both the pump 
and bypass lines. d p b= −V V V  = 

constant = 0.20 
m3/s at any value of 
KL valve.


