M E 320 Professor John M. Cimbala Lecture 31

Today, we will:
Do some example problems — Exact solutions of the Navier-Stokes equation

Example: Exact solution for Couette flow
Given: Steady, incompressible, fully developed laminar flow in the x-y plane between two
infinite parallel plates. The top plate is moving and the bottom one is stationary.

V—

Moving plate

h Fluid: p, u y
‘ Fixed plate | X
Assumptions and approximations:
1. The flow is steady [o/ct of anything = 0].
2. The flow is two-dimensional in the x-y plane [0/0z of anything = 0, w = 0].
3. Gravity effects are negligible or ignored.

4. The flow is fully developed [0/0x of any velocity = 0; velocity does not change with x].

5. Pressure is constant everywhere. P e 13 .
To do: Calculate the velocity field. 3 Y S
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Example: Oil flowing down a ramp

Given: Steady, incompressible, fully developed laminar flow in the x-y plane: oil flowing by
gravity down an infinitely long ramp, as sketched. Note that the coordinate system is
rotated for convenience to align with the direction of flow.

U Oil: p, u l
( P = Pam
- \Q :
U \y ast IVen Wall ‘Z)) 0

Assumptions and approximations:
1. The flow is steady [o/ct of anything = 0].

2. The flow is two-dimensional in the x-y plane [0/0z of anything = 0, w = 0].
3. Gravity acts downward as shown.
4. The flow is fully developed [0/0x of any velocity = 0; velocity does not change with x].
5. The pressure on the oil surface (adjacent to the air) is atmospheric pressure.
6. The viscous effects of the air are negligible compared to those of the oil.
To do: Choose the most appropriate boundary conditions. A. uzo X
Solution:

At the wall, the no-slip condition demands thataty =0, u=0and v =0.
At the top surface of the oil (adjacent to the air), we specify that at P = Pyy,.
Also at the top surface of the oil (adjacent to the air), we need a BC for u.
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Example — Laminar Pipe Flow; an Exact Solution of the Navier-Stokes Equation
(Example 9-18, Cengel and Cimbala)

Note: This is a classic problem in fluid mechanics.

| Pipe wall

FIGURE 9-71

Geometry of Example 9-18: steady

laminar flow in a long round pipe with

an applied pressure gradient dP/dx

- pushing fluid through the pipe. The

o oF By 2 pressure gradient is usually produced
X X—X by a pump and/or gravity.

EXAMPLE 9-18 Fully Developed Flow in a Round
Pipe—Poiseuille Flow

Consider steady, incompressible, laminar flow of a Newtonian fluid in an
infinitely long round pipe of diameter D or radius R = D/2 (Fig. 9-71). We
ignore the effects of gravity. A constant pressure gradient dP/ax is applied in
the x-direction,

Fully developed flow
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where x; and x, are two arbitrary locations along the x-axis, and P, and P,
are the pressures at those two locations. Note that we adopt a modified
cylindrical coordinate system here with x instead of z for the axial compo-
nent, namely, (r, 8, x) and (u,, u,, w). Derive an expression for the velocity
field inside the pipe and estimate the viscous shear force per unit surface
area acting on the pipe wall.

It is good practice to number the assumptions.
SOLUTION For flow inside a round pipe we are to calculate the velocity
field, and then estimate the viscous shear stress acting on the pipe wall.
Assumptions 1 The pipe is infinitely long in the x-direction. 2 The flow is
steady (all partial time derivatives are zero). 3 This is a parallel flow (the ‘h'—’)')\t
r-component of velocity, u,, is zero). 4 The fluid is incompressible and New- by
tonian with constant properties, and the flow is laminar (Fig. 9-72). 5 A s
constant pressure gradient is applied in the x-direction such that pressure &J/v
changes linearly with respect to x according to Eq. 1. 6 The velocity field is P
axisymmetric with no swirl, implying that u, = O and all partial derivatives

with respect to # are zero. 7 We ignore the effects of gravity.




Analysis To obtain the velocity field, we follow the step-by-step procedure
outlined in Fig. 9-52.

Step 1 Lay out the problem and the geometry. See Fig. 9-71.

Step 2 List assumptions and boundary conditions. We have listed seven
assumptions. The first boundary condition comes from imposing the no-
slip condition at the pipe wall: (1) at r = R, V = 0. The second boundary
condition comes from the fact that the centerline of the pipe is an axis of
symmetry: (2) at r = 0, du/ar = 0.

Step 3 Write out and simplify the differential equations. We start with the
incompressible continuity equation in cylindrical coordinates, a modified
version of Eg. 9-62a,
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assumption 3 assumption 6

Equation 2 tells us that v is not a function of x. In other words, it doesn’t
matter where we place our origin—the flow is the same at any x-location.
This can also be inferred directly from assumption 1, which tells us that
there is nothing special about any x-location since the pipe is infinite in
length—the flow is fully developed. Furthermore, since u is not a function
of time (assumption 2) or @ (assumption 6), we conclude that v is at most
a function of r,

Result of continuity: o u = u(r) only (3)

This is a tremendous simplification, and allows us to solve the problem analytically!

We now simplify the axial momentum equation (a modified version of
Eg. 9-62d) as far as possible:

When terms drop out, | like to
show why, as | do here (for
clarity), using the numbered
assumptions for brevity.
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As in Examples 9-15 through 9-17, the material acceleration (entire left
side of the xxmomentum equation) is zero, implying that fluid particles are

not accelerating at all in this flow field, and linearizing the Navier-Stokes
equation (Fig. 9-73). We have replaced the partial derivative operators for
the w-derivatives with total derivative operators because of Eq. 3.

In similar fashion, every term in the -momentum equation (Eq. 9-62b)
except the pressure gradient term is zero, forcing that lone term to also
be zero,
of
ar

r-momentum: 0 (5)
In other words, P is not a function of r. Since P is also not a function of
time (assumption 2) or @ (assumption 6), P can be at most a function of x,

Result of r-momentum: P = P(x) only (6)

Therefore, we replace the partial derivative operator for the pressure
gradient in Eq. 4 by the total derivative operator since P varies only with
x. Finally, all terms of the 8-component of the Navier—Stokes equation
(Eq. 9-62c) go to zero.

We have simplified the equations as much as possible. Now we need to solve them.

Step 4 Solve the differential equations. Continuity and ~momentum have

already been “solved,” resulting in Egs. 3 and 6, respectively. The

#-momentum equation has vanished, and thus we are left with Eq. 4

(x-momentum). After multiplying both sides by r, we integrate once to obtain
du r* dP

el 7
’dr 2u dx ; H

where C,; is a constant of integration. Note that the pressure gradient dP/dx
is a constant here. Dividing both sides of Eq. 7 by r, we integrate a second
time to get

r* dP
:4ME+C11113'+C2 (8)

u

where C, is a second constant of integration.

Notice that there are two constants of integration, since we had to integrate twice.
Equation 8 is the solution we are looking for, except we need to determine the two
constants of integration C, and C,. We do this by applying boundary conditions.




Step 5 Apply boundary conditions. First, we apply boundary condition (2)

to Eq. 7, du/dr=0atr=0 Notice: We apply this BC to Eq. (7)

Boundary condition (2):‘ 0=0+C, —> C(C; =0

An alternative way to interpret this boundary condition is that v must
remain finite at the centerline of the pipe. This is possible only if constant
C; is equal to O, since In(0) is undefined in Eq. 8. Now we apply boundary
condition (1),

R? dP R dP
Boundary condition (1): u = EE +0+CG =0 - (G = AEE
Finally, Eq. 8 becomes
Answer
. . 1 dpP 1ol
Axial velocity: ==yt — B (9)
4 dx

The axial velocity profile is thus in the shape of a paraboloid, as sketched
in Fig. 9-74.

Step 6 Verify the results. You can verify that all the differential equations
and boundary conditions are satisfied.

The final expression for u is a paraboloid, same as previously for laminar pipe flow.

FIGURE 9-74

Axial velocity profile of Example 9-18:
steady laminar flow in a long round
pipe with an applied constant-pressure
gradient dP/dx pushing fluid through
the pipe.
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