M E 320

Professor John M. Cimbala

Lecture 32

Today, we will:

- Continue our brief introduction to: CFD (Chapter 15)
- Begin Chapter 10 Approximate Solutions of the N-S Equation

VIII. APPROXIMATE SOLUTIONS OF THE NAVIER-STOKES EQUATION A. Introduction

We have three ways to solve the differential equations of fluid flow:

- \rightarrow 1. Analytically (Chapter 9) [solve exactly, but only for very simple problems]
- \rightarrow 2. Numerically (Chapter 15) [use CFD on a computer to solve for thousands of cells]
- 3. Approximately (Chapter 10) [ignore some terms in the N-S equation, then solve]

B. Nondimensionalization of the Equations of Motion

1

1. Consider only incompressible from
Continuity eq.
Where
$$\vec{\nabla} = \frac{2}{3x}\vec{i} + \frac{1}{3y}\vec{j} + \frac{1}{3z}\vec{k}$$

 $\vec{\nabla} = \vec{u}\vec{i} + \vec{y}\vec{j} + \vec{w}\vec{k}$
 $\vec{\chi} = \vec{x}\vec{i} + \vec{y}\vec{j} + \vec{k}$

Let
$$V = \frac{v}{v}$$
, $v' = \frac{v}{v}$, $w' = \frac{w}{v}$.
 $u'' = \frac{v}{v}$, $v'' = \frac{v}{v}$, $w'' = \frac{w}{v}$.
 $u'' = \frac{v}{v}$, $v'' = \frac{w}{v}$, $w'' = \frac{w}{v}$.
 $u'' = \frac{v}{v}$, $v'' = \frac{w}{v}$, $w'' = \frac{w}{v}$.
 $u'' = \frac{v}{v}$, $v'' = \frac{w}{v}$, $w'' = \frac{w}{v}$.

Trobuct operator?
$$\left\{ \begin{array}{c} \overrightarrow{\nabla} \right\} = \left\{ \begin{array}{c} 1 \\ 1 \end{array}\right\}$$
 Jet $\overrightarrow{\nabla}^{\mu} = 1$ $\overrightarrow{\nabla}^{\mu}$
Continuents of $\overrightarrow{\nabla}^{\mu}$ and $\overrightarrow{\nabla}^{\mu}$ $\overrightarrow{\nabla}^{\mu}$ $\overrightarrow{\nabla}^{\mu}$ $\overrightarrow{\nabla}^{\mu}$ $\overrightarrow{\nabla}^{\mu}$
Continuents of $\overrightarrow{\nabla}^{\mu}$
 $\begin{array}{c} \overrightarrow{\nabla}^{\mu} & \overrightarrow{\nabla}^{\mu} & \overrightarrow{\nabla}^{\mu} \\ \overrightarrow{\nabla}^{\mu} \overrightarrow{\nabla}^{\mu} \\ \overrightarrow{\nabla}^{\mu} \\ \overrightarrow{\nabla}^{\mu} \\ \overrightarrow{\nabla}^{\mu} \overrightarrow{\nabla}^{\mu}$