M E 320

Professor John M. Cimbala

Lecture 36

Today, we will:

- Continue examples of superposition of irrotational flows flow over a circular cylinder
- Start discussing the last approximation of Chapter 10: The Boundary Layer Approx.

Recall, the Rankine half-body:

Example: Rankine Half-Body

Given: A Rankine half-body is constructed using a horizontal freestream of velocity V = 5.0 m/s and line source at the origin of strength $\frac{\dot{V}}{L} = 2.5\pi \frac{\text{m}^2}{\text{s}}$. The stream function is $\psi = Vr\sin\theta + \frac{1}{2\pi}\frac{\dot{V}}{L}\theta$

To do: Generate expressions for u_r and u_{θ} , and calculate the distance *a* (the distance between the origin and the stagnation point).

Solution:

- We can also define the **pressure coefficient**, $C_p = \frac{P P_{\infty}}{\frac{1}{2}\rho V_{\infty}^2} = 1 \frac{V^2}{V_{\infty}^2}$.
- On the cylinder, it turns out that $C_p = 1 4\sin^2 \beta$, where β is the angle from the nose.

3. The BL yethin - We z length scale instead in
Use L for
$$\frac{1}{2x}$$
 throws
Use for $\frac{1}{2x}$ throws A

 $\frac{1}{2x} - \frac{1}{2x}$ A $\frac{1}{2y} - \frac{1}{2x}$ A $\frac{1}{2x}$

See Text for Derivation
The Boundary Layer EQUATIONS: (in X,y BL wording, Steady no
graves)
Contravely
 $\frac{1}{2x} + \frac{1}{2y} = 0$
X-mann
 $\frac{1}{2x} + \frac{1}{2y} = 0$
X-mann
 $\frac{1}{2x} + \frac{1}{2y} = -\frac{1}{2x} + \frac{1}{2x} + \frac{1}{2y^2}$
 $\frac{1}{2x} + \frac{1}{2y^2} = -\frac{1}{2x} + \frac{1}{2y^2} + \frac{1}{2y^2}$
 $\frac{1}{2x} + \frac{1}{2y^2} = -\frac{1}{2y} + \frac{1}{2y^2} + \frac{1}$