

Practical example of the usefulness of displacement thickness: Wind tunnel design.

In these exaggerated drawings, as the BL grows along the walls of the wind tunnel, the speed in the core flow U(x) must *increase* because the core flow "feels" like the wind tunnel walls are converging, due to the displacement thickness effect.

• Step 5 Vorb and the OL is this

$$\frac{\int_{X}^{2} = \frac{4}{5R_{e_{X}}}}{\int_{X}^{2} = \frac{4}{5R_{e_{X}}}} = \mu \ln \frac{1}{2} e_{e_{1}} \quad \text{the BL is this}$$
e.g. $Re = 1000 (10^{3})$, $\frac{1}{2} = \frac{4}{5100} = 0.155$ not relige
 $f_{x} = \frac{1}{5} \frac{1}{500} = \frac{1}{500} = 0.0157$ and $relige
 $f_{y} = \frac{1}{5} e_{e_{1}} \frac{1}{5} e_{e_{$$

6. Turbulent Boundary Layer on a Flat Plate

Since $\text{Re}_x = Ux/v$ increases with *x* (distance down the plate), eventually Re_x gets big enough that the BL transitions from laminar to turbulent. Here is a schematic of the process:

Quantities of interest for the turbulent flat plate boundary layer:

Just as we did for the laminar (Blasius) flat plate boundary layer, we can use these expressions for the velocity profile to estimate quantities of interest, such as the 99% boundary layer thickness δ , the displacement thickness δ^* , the local skin friction coefficient $C_{f,x}$, etc. These are summarized in Table 10-4 in the text.

TABLE 10-4	Column (b) expreferred for end		xpressions are generally engineering analysis.	
Summary of expressions for laminar and turbulent boundary layers on a smooth flat plate aligned parallel to a uniform stream $*$ (Empirical)				
		(a)	(b)	
Property	Laminar	Turbulent ^(†)	Turbulent ^(‡)	
Boundary layer thickness	$\frac{\delta}{x} = \frac{4.91}{\sqrt{\text{Re}_x}}$	$\frac{\delta}{x} \cong \frac{0.16}{\left(\operatorname{Re}_x\right)^{1/7}}$	$\frac{\delta}{x} \cong \frac{0.38}{(\mathrm{Re}_x)^{1/5}}$	
Displacement thickness	$\frac{\delta^*}{x} = \frac{1.72}{\sqrt{\text{Re}_x}}$	$\frac{\delta^*}{x} \cong \frac{0.020}{(\operatorname{Re}_x)^{1/7}}$	$\frac{\delta^*}{x} \cong \frac{0.048}{(\operatorname{Re}_x)^{1/5}}$	
Momentum thickness	$\frac{\theta}{x} = \frac{0.664}{\sqrt{\text{Re}_x}}$	$\frac{\theta}{x} \cong \frac{0.016}{(\operatorname{Re}_x)^{1/7}}$	$\frac{\theta}{x} \cong \frac{0.037}{(\operatorname{Re}_x)^{1/5}}$	
Local skin friction coefficient	$C_{f,x} = \frac{0.664}{\sqrt{\text{Re}_x}}$	$C_{f,x} \cong \frac{0.027}{\left(\operatorname{Re}_x\right)^{1/7}}$	$C_{f,x} \cong \frac{0.059}{(\operatorname{Re}_x)^{1/5}}$	

Note that $C_{f,x}$ is the *local* skin friction coefficient, applied at only *one* value of x.

To these we add the integrated *average skin friction coefficients* for *one side* of a flat plate of length *L*, noting that C_f applies to the entire plate from x = 0 to x = L (see Chapter 11):

 Laminar:
 $C_f = \frac{1.33}{\text{Re}_L^{1/2}}$ $\text{Re}_L \leq 5 \times 10^5$ (11-19)

 Turbulent:
 $C_f = \frac{0.074}{\text{Re}_L^{1/5}}$ $5 \times 10^5 \leq \text{Re}_L \leq 10^7$ (11-20)

 Turbulent:
 $C_f = \frac{0.074}{\text{Re}_L^{1/5}}$ $5 \times 10^5 \leq \text{Re}_L \leq 10^7$ (11-20)

For cases in which the laminar portion of the plate is taken into consideration, we use:

$$C_{f} = \frac{0.074}{\text{Re}_{L}^{1/5}} - \frac{1742}{\text{Re}_{L}} \qquad 5 \times 10^{5} \leq \text{Re}_{L} \leq 10^{7} \qquad (11-22)$$

$$V_{Je} \quad \text{this one} \rightarrow \text{More alwate, accounts for the larger portion of the BL}$$

Turbulent flat plate boundary layers with wall roughness:

Finally, all of the above are for *smooth* flat plates. However, if the plate is *rough*, the average skin friction coefficient C_f increases with roughness ε . This is similar to the situation in pipe flows, in which Darcy friction factor *f* increases with pipe wall roughness.

over smooth and rough flat plates.

Just as with pipe flows, at high enough Reynolds numbers, the boundary layer becomes "fully rough". For a *fully rough flat plate turbulent boundary layer* with average wall roughness height ε ,

Fully rough turbulent regime:
$$C_f = \left(1.89 - 1.62 \log \frac{\varepsilon}{L}\right)^{-2.5}$$
 (11-23)

This equation represents the flat portions of Fig. 11-31 that are labeled "Fully rough".

Example: Drag on a sheet of plywood (continued)

Given: Craig buys a 4 × 8 ft sheet of plywood at Lowe's and mounts it on the top of his car. He drives (carefully) at 35 mph \approx 51.3 ft/s. The air density and kinematic viscosity in English units are $\rho = 0.07518$ lbm/ft³ and $v = 1.632 \times 10^{-4}$ ft²/s, respectively.

To do: Estimate δ at the end of the plate (x = L) and the drag force on the plate for two cases: (a) smooth plate, turbulent BL, (b) rough plate ($\varepsilon = 0.050$ in.), turbulent BL.

Solution:

We solved this problem previously assuming that the BL remained *laminar*. We first solved for the Reynolds number at the end of the plate, $\text{Re}_x = \text{Re}_L$ (at x = L) = $UL/v = 2.515 \times 10^6$. Results: $\delta = 0.297$ in., $F_D = 0.165$ lbf. Now let's repeat the calculations for a *turbulent* BL.

