

Normal Shock Equations (1 = upstream, 2 = downstream of stationary shock):

$$\begin{split} T_{01} &= T_{02} \\ \mathrm{Ma}_{2} &= \sqrt{\frac{(k-1)\mathrm{Ma}_{1}^{2}+2}{2k\mathrm{Ma}_{1}^{2}-k+1}} \\ \frac{P_{2}}{P_{1}} &= \frac{1+k\mathrm{Ma}_{1}^{2}}{1+k\mathrm{Ma}_{2}^{2}} = \frac{2k\mathrm{Ma}_{1}^{2}-k+1}{k+1} \\ \frac{\rho_{2}}{\rho_{1}} &= \frac{P_{2}/P_{1}}{T_{2}/T_{1}} = \frac{(k+1)\mathrm{Ma}_{1}^{2}}{2+(k-1)\mathrm{Ma}_{1}^{2}} = \frac{V_{1}}{V_{2}} \\ \frac{T_{2}}{T_{1}} &= \frac{2+\mathrm{Ma}_{1}^{2}(k-1)}{2+\mathrm{Ma}_{2}^{2}(k-1)} \\ \frac{P_{02}}{P_{01}} &= \frac{\mathrm{Ma}_{1}}{\mathrm{Ma}_{2}} \left[\frac{1+\mathrm{Ma}_{2}^{2}(k-1)/2}{1+\mathrm{Ma}_{1}^{2}(k-1)/2} \right]^{(k+1)/[2(k-1)]} \\ \frac{P_{02}}{P_{1}} &= \frac{(1+k\mathrm{Ma}_{1}^{2})[1+\mathrm{Ma}_{2}^{2}(k-1)/2]^{k/(k-1)}}{1+k\mathrm{Ma}_{2}^{2}} \end{split}$$

TABLE A-14

One-dimensional normal shock functions for an ideal gas with $k = 1.4$							For air	
Ma ₁	Ma ₂	P_2/P_1	ρ_2/ρ_1	T_2/T_1	P_{02}/P_{01}	P_{02}/P_{1}		
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.8929		
1.1	0.9118	1.2450	1.1691	1.0649	0.9989	2.1328		
1.2	0.8422	1.5133	1.3416	1.1280	0.9928	2.4075	1	
1.3	0.7860	1.8050	1.5157	1.1909	0.9794	2.7136		
1.4	0.7397	2.1200	1.6897	1.2547	0.9582	3.0492		Υ. ΛΛ
1.5	0.7011	2.4583	1.8621	1.3202	0.9298	3.4133	Int	Digger Ma,
1.6	0.6684	2.8200	2.0317	1.3880	0.8952	3.8050	.].	
1.7	0.6405	3.2050	2.1977	1.4583	0.8557	4.2238	V 15	, the
1.8	0.6165	3.6133	2.3592	1.5316	0.8127	4.6695		
1.9	0.5956	4.0450	2.5157	1.6079	0.7674	5.1418	5-	fronger the
2.0	0.5774	4.5000	2.6667	1.6875	0.7209	5.6404	Ŭ	
2.1	0.5613	4.9783	2.8119	1.7705	0.6742	6.1654		Chnek
2.2	0.5471	5.4800	2.9512	1.8569	0.6281	6.7165		
2.3	0.5344	6.0050	3.0845	1.9468	0.5833	7.2937		
2.4	0.5231	6.5533	3.2119	2.0403	0.5401	7.8969		
2.5	0.5130	7.1250	3.3333	2.1375	0.4990	8.5261		
2.6	0.5039	7.7200	3.4490	2.2383	0.4601	9.1813		
2.7	0.4956	8.3383	3.5590	2.3429	0.4236	9.8624		
2.8	0.4882	8.9800	3.6636	2.4512	0.3895	10.5694		
2.9	0.4814	9.6450	3.7629	2.5632	0.3577	11.3022		
3.0	0.4752	10.3333	3.8571	2.6790	0.3283	12.0610		
4.0	0.4350	18.5000	4.5714	4.0469	0.1388	21.0681		
5.0	0.4152	29.000	5.0000	5.8000	0.0617	32.6335		
00	0.3780	00	6.0000	00	0	00		

Noty about normal shorts 1) shouly are only from superina to subsonic march 2) Should cause compression P2>P, T2>T, P2>P, 3) Total pressure Poz CPO, but To, = Toz 4) Thus waves are not ventropic 25>0 5) Werk shocks - Ma 21.0 (e.g. 1.0001) · Jourd wave or acoustic wave 6) "Strong shocks" - Ma, 72 We can generate shocks in the lab using a converging-diverging 1023le Statisnery CONVERGING - DIVERGING NORLE Pb Ma=1 Major Mazer Superin -> Subsenic -> The shock moves farther downstream as back prever Ph 15 decreased (See next by for full severintion of PL secretion)

Example – High speed jet aircraft

Given: The SR-71 travels at Ma = 3.2 at 24 km altitude (80,000 ft).

To do: Calculate its air speed.

Solution:

- From Table A-11E, T at 24 km altitude is $-69.7^{\circ}F = 217$ K.
- Using k = 1.4 and $R_{air} = 287 \text{ m}^2/(\text{s}^2 \cdot \text{K})$, $c = (kRT)^{1/2} = 295 \text{ m/s}$.
- Thus, $V = Ma \cdot c = 3.2(295 \text{ m/s}) = 944 \text{ m/s} (= 2110 \text{ mph}).$

Shock Diamonds ("tiger tail"):

Example of a Rocket Engine:

Pratt & Whitney RL-10 rocket motor designed for a specific Ma_{exit} (photographed at the National Air & Space Museum). 1960-vintage, $Ma_{exit} = 5$, k = 1.33, thrust = 15,000 lbf, $D_e \sim 1$ m, used in the Saturn IV 2nd stage.

Example – Normal shock at Ma = 3.0

Given: A large tank has upstream stagnation properties $T_0 = 1000$ K and $P_0 = 1.00$ MPa. A converging/diverging nozzle accelerates air isentropically from the tank to Ma = 3.0 just before the exit. Right at the exit plane is a normal shock wave as sketched.

To do: Calculate the pressure, temperature, and density upstream (1) and downstream (2) of the shock.

Solution:

- From Table A-13 at Ma₁ = 3.0, A/A * = 4.2346, $P/P_0 = 0.0272$, $T/T_0 = 0.3571$, and $\rho/\rho_0 = 0.0760$. (User true from)
- From Table A-14 at Ma₁ = 3.0, Ma₂ = 0.4752, $P_2/P_1 = 10.3333$, $T_2/T_1 = 2.679$, and $\rho_2/\rho_1 = 3.8571$. (acress three should be should
- The rest of the problem to be completed in class.

Use isentropole relations through the whole duct up to (1), just before the shock:

$$P_{i} = \begin{pmatrix} P_{i} \\ P_{0} \end{pmatrix} P_{0} = 0.0272 (1.00 \text{ MP}_{a}) = 0.0272 \text{ MP}_{a} = 27.2 \text{ HP}_{a} = P_{i}$$
Similarly $T_{i} = \frac{T_{i}}{T_{0}} T_{0} = 0.3571 (1000 \text{ K}) = 357.1 \text{ K} \rightarrow \overline{T_{i}} = 357 \text{ K}$

$$P_{i} = \frac{P_{i}}{RT_{i}} = \frac{27,200 \text{ N/m}^{2}}{(287 \frac{m^{2}}{5^{2} \text{ K}})(357.1 \text{ K})} \begin{pmatrix} lym \\ s^{2}.N \end{pmatrix} = 0.26540 \frac{ly}{m^{3}} \rightarrow P_{i} = 0.265 \frac{ly}{m^{3}}$$

Now we shock relations to get properties C (2) just after the shock .

$$P_{2} = \frac{P_{2}}{P_{1}} P_{1} = (10.3333)(27.2 \text{ kP}_{6}) = 281.1 \text{ kP}_{6} - P_{2} = 281.1 \text{ kP}_{6}$$

$$T_{2} = \frac{T_{2}}{T_{1}} T_{1} = (2.679)(357.1 \text{ k}) = 356.67 \text{ k} \rightarrow T_{2} = 957. \text{ k}$$

$$P_{2} = \frac{P_{2}}{P_{1}} P_{1} = (3.8571)(0.26540 \frac{P_{3}}{P_{3}}) = 1.0237 \frac{P_{3}}{P_{1}} \rightarrow P_{2} = 1.02 \frac{P_{3}}{P_{3}}$$

$$\int \int \int P_{1} P_{1} = (3.8571)(0.26540 \frac{P_{3}}{P_{3}}) = 1.0237 \frac{P_{3}}{P_{1}} \rightarrow P_{2} = 1.02 \frac{P_{3}}{P_{3}}$$

THE END !