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Introduction  
 Instruments and data can be either analog (continuous) or digital (discrete). 
 In this learning module, we discuss digital data, and how to convert between analog and digital signals. 

 

Review - Decimal to Binary Conversion  
 While we are used to working with decimal numbers (base 10), computers and many modern instruments 

and electronic devices use binary numbers (base 2).  
 Decimal numbers contain the digits 0 through 9, while binary numbers contain only digits 0 and 1.  
 As a review, here is a listing of the first eight (including zero) decimal and binary numbers:  
 

Decimal number Binary number
0 0 
1 1 
2 10 
3 11 
4 100 
5 101 
6 110 
7 111 

 

 There are simple techniques to convert from decimal to binary and vice-versa:  
o Decimal to binary:  

 Successively divide by 2, as in the following example: convert the decimal number 29 into binary:  
 

Value/2 Integer value Remainder
29/2 = 14 + 1/2 14 1

14/2 = 7 + 0/2 7 0
7/2 = 3 + 1/2 3 1
3/2 = 1 + 1/2 1 1
1/2 = 0 + 1/2 0 1

 

 The binary number is obtained from the “remainder” column, reading from bottom to top 
(backwards); the answer is 11101.  

o Binary to decimal:  
 Add up each non-zero bit, from left to right, converting the binary number 11101 into decimal:  

 

Bit considered (underlined) Value of the place Value of the bit 
11101 1 1  1 = 1 
11101 2 0  2 = 0 
11101 4 1  4 = 4 
11101 8 1  8 = 8 
11101 16 1  16=16 

 

 The decimal number is obtained by summing the “Value of the bit” column; the answer is 29.  
 

 Example: 
Given: The decimal number x = 4 
To do: Convert x to a binary 4-bit number. 
Solution: We use the technique of successive division by 2, as per the following table: 

 

Value/2 Integer value Remainder
4/2 = 2 + 0/2 2 0
2/2 = 1 + 0/2 1 0
1/2 = 0 + 1/2 0 1

 

The resulting binary number is read from the bottom to the top, 0100x   in binary form. We have added a 
leading zero so that the result is a 4-bit number. If we were asked for 8 bits, we would write x = 0000 0100. 

 Some calculators have built-in binary-to-decimal and decimal-to-binary converters.  

Read this way, 
bottom to top. 

Sum this 
column. 

Read this way, 
bottom to top. 
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Analog to Digital Conversion (A/D conversion) 
 Digital data acquisition is used in digital multimeters, digital oscilloscopes, computer-controlled data 

acquisition systems, and many other modern instruments and electronic devices such as cell phones.  
 In all these examples, the conversion of an analog signal into a digital signal is accomplished with an 

electronic device called an analog-to-digital converter, which we abbreviate A/D converter. 
 The goal of an A/D converter is to change an analog voltage signal into a digital number (in binary form). 
 An A/D converter is labeled as N-bit, where the number of bits N represents how many bits (ones and 

zeroes) are used in the digital output of the A/D converter. E.g., an 8-bit converter creates an 8-bit output. 
 For simplicity, consider a 2-bit A/D converter (N = 2) with a range of 5 to 5 volts. The voltage range is 

divided into bins as follows: [Note: This is just one of several optional ways to assign the bins.]  
 

Analog voltage (volts) Bin number Digital output (binary) Assigned voltage, V (volts)
5  V < 2.5 0 00 V = Vmin + 0.5V = 3.75
2.5  V < 0 1 01 V = Vmin + 1.5V = 1.25

0  V < 2.5 2 10 V = Vmin + 2.5V =  1.25
2.5  V < 5 3 11 V = Vmin + 3.5V =  3.75

 

 The assigned voltage for each bin is here defined as half-way between the limits of the bin. 
 The number of bins = 2N for an N-bit A/D converter. For our example 2-bit converter, there are 22 = 4 bins. 

 The resolution of the A/D converter is defined as 
 max minresolution

2N

V V
V


   . 

 In the present example (2-bit A/D converter), the resolution is   25 ( 5) / 2 2.5 VV     .  

 Alternately, the resolution can be expressed as half of this value on either side, i.e., 1.25 V. Another name 
for the resolution expressed this way is quantization error (also sometimes called quantizing error), defined 

as 
   max min max min

1

1 1 1
quantization error resolution

2 2 2 2 2N N

V V V V
V 

 
         . 

 In the present example (2-bit A/D converter), the quantization error is 1.25 V.  
 This quantization error is too large for most practical applications. Notice that we cannot tell the difference 

between an input of 2.6 V and 4.9 V  both of these input voltages fall into bin number 3, and would be 
assigned the output voltage of 3.75 V. 

 We might express this reading as V = 3.75 V +/- 1.25 V to reflect the resolution of the A/D converter. 
 Obviously, the bigger N, the better the resolution. Consider, for example, a 12-bit A/D converter (N = 12). 

o The number of bins = 212 = 4096, which is a digital output of 0 to 4095. 
o The resolution (for a converter with a range of 5 to 5 V) is V = 0.00244141 V.   
o The quantization error is V/2 = 0.00122070 V. 

 Selected rows of the bin table for a 12-bit A/D converter with a range of 5 to 5 V are shown below:  [Note: 
Again, this is just one of several optional ways to assign the bins.] 

 

Analog voltage (volts) Bin number Digital output (binary) Assigned voltage, V (volts)
5  V < 4.9976 0 0000 0000 0000 V = Vmin + 0.5V = 4.998779

4.9976  V < 4.9951 1 0000 0000 0001 V = Vmin + 1.5V = 4.996338
… etc. … … etc. … … etc. … … etc. …

0  V < 0.00244 2048 1000 0000 0000 V = Vmin + 2048.5V = 0.0012207
… etc. … … etc. … … etc. … … etc. …

4.9951  V < 4.9976 4094 1111 1111 1110 V = Vmin + 4094.5V = 4.996338
4.9976  V < 5 4095 1111 1111 1111 V = Vmin + 4095.5V = 4.998779

 

 Comparing the two tables above, it should be obvious that the quantization error is much less for the 12-bit 
A/D converter than for the 2-bit (with both converters covering the same range of 5 to 5 V.) 

 Most commercially available A/D converters are 8, 12, 14, or 16-bit. [Those in our lab are 16-bit.] 
 The range of most modern A/D converters is adjustable, and can be either monopolar (e.g., 0 to 1 V, 0 to 5 

V, 0 to 10 V, etc.) or bipolar (e.g., 1 to 1 V, 10 to 10 V, etc.). 
 Dynamic range, DR = ratio of the largest voltage to the smallest change in voltage that can be measured, 

expressed in decibels (dB): monopolar:  1020log 2NDR  , bipolar:  1
1020log 2NDR  . 

Some authors call this the signal-to-quantization noise ratio, SQNR (same equations as for DR). 
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Discrete Sampling 
 The main difference between analog and digital data acquisition is that digital systems sample the signal at 

discrete times only, not continuously. 
 In a digital data acquisition system, no information is 

recorded at times in between the discrete sampling 
times. 

 Consider a continuous signal that is sampled discretely 
at sampling frequency fs, as sketched to the right. Here,  
fs = 10 Hz. 

 For a given sampling frequency fs, the time period t 
between samples is the inverse of fs, 1/ st f  . Here, t 

= 1/(10 s1) = 0.1 s. 
 Warning: If we are not careful, discrete sampling can 

lead to incorrect conclusions about the original signal! 
 Two of the potential problems (clipping and aliasing) 

are discussed in detail below: 
 

Clipping 
 If the original signal lies outside of the range of the A/D converter, it is clipped at the extreme value. In other 

words, any voltage greater than the upper limit of the A/D converter is assigned the maximum voltage of the 
A/D converter. 

 Likewise, any voltage less than the lower limit of the A/D converter is assigned the minimum voltage of the 
A/D converter. 

 For example, for a 12-bit A/D converter with a range of 
5 to 5 V, any voltage above 5 V is assigned the 
maximum voltage of 4.9988 V, according to the above 
bin table. 

 In most cases, the user does not know that the signal has 
been clipped, and this can lead to incorrect results, 
although some data acquisition systems give a warning 
when the signal gets clipped. 

 A clipped signal (same signal as above, but clipped when 
using a 5 to 5 V A/D converter) is illustrated here. 

 Notice that all voltages above 5 V in this example have 
been clipped to 5 V. 

 Clipping would also occur if the voltage dips below -5 V. 
 

Aliasing 
 If the sampling frequency fs is too low, the digital data acquisition system can actually measure an incorrect 

frequency! This is called aliasing. 
 Consider a pure sine wave.  

 The equation for a general sine wave signal is    sin 2g t C A ft     or     sing t C A t    , 

where f is the frequency (hertz),  is the radian frequency (radians/s) and 2 f  , A is the amplitude 

(volts), C is the DC offset (volts), t is the time (seconds), and  is the phase shift (radians). 
 Aliasing is best illustrated by example.  
 Suppose the original signal is a pure 10 Hz sine wave, with an amplitude of 3 volts, a DC offset of 3 volts, 

and a phase shift of 90 degrees (/2 radians): 
o The frequency of the signal is f = 10.0 Hz.  
o The period of the signal is T = 1/f = 0.100 s.  
o The amplitude of the signal is A = 3.00 volts.  
o The DC offset of the signal is C = 3.00 volts.  
o The phase shift of the signal is  = /2 radians.  

o For the sine wave used in this example, the equation of the signal is     3 3sin 2 10 / 2g t t    . 

 This example sine wave is easily simulated in Excel or Matlab, as is the discrete sampling (and aliasing). 
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 Also, suppose we sample discretely (digitally) at a sampling frequency fs = 15 Hz, 15 times per second, or 
one sample every t = 1/(15 s1) = 0.06666… s. 

 A half second of both the analog signal and the discretely 
sampled data points is shown on the plot to the right. 

 The aliasing is obvious  the perceived signal looks 
nothing like the original! In fact, the apparent frequency 
of the inferred or perceived signal (formed by 
connecting the discrete data points with straight line 
segments) is 5 Hz, and it is an odd-looking trapezoidal 
waveform rather than a sine wave. 

 It turns out that if the sampling frequency fs is greater 
than two-thirds of the actual frequency f, but less than 
twice the actual frequency, the perceived frequency (also 
called the aliasing frequency, fa) is equal to the absolute 
value of the difference between the sampling frequency 
and the actual frequency. 

 In equation form, the above statement is: 
2

if 2 ,  then  
3 s a sf f f f f f    . 

 In the above example, f = 10 Hz and fs = 15 Hz, so 
2 2

10 6.6666...
3 3

f   , which is less than fs = 15 Hz. 

Therefore, the perceived frequency or aliasing 
frequency is a sf f f   = 15 10 5 Hz  . This 

agrees with the observed perceived frequency on the 
above plot (red line). 

 Here is another example. For the same sine wave (f = 
10 Hz), the signal is plotted to the right for 1 second. 
Data are sampled discretely at fs = 11 Hz. 

 Note that the perceived signal looks like a sine wave at 
1 Hz! We check the predicted aliasing frequency by 

using the above equation: Since 
2 2

10 6.6666...
3 3

f   , 

which is less than fs = 11 Hz, the perceived frequency 
or aliasing frequency is a sf f f   = 11 10 1 Hz  . 

This agrees with the observed perceived frequency on 
the above plot (red line). 

 One more example for the same sine wave (f = 10 Hz): Data are sampled discretely at fs = 9 Hz, and the data 
are plotted to the right. 

 Note that the perceived signal also looks like a sine 
wave at 1 Hz!  We check the predicted aliasing 
frequency by using the above equation: Since 
2 2

10 6.6666...
3 3

f   , which is less than fs = 9 Hz, the 

perceived frequency or aliasing frequency is 

a sf f f   = 9 10 1 Hz  . This agrees with the 

observed perceived frequency on the plot to the right 
(red line). 

 Comparing the plots for fs = 11 Hz and fs = 9 Hz, they 
look similar at first glance, since the perceived 
frequency is 1 Hz in both cases. However, careful 
inspection reveals that the sampled data points occur at 
different phases of the signal in the two plots. Furthermore, the 11-Hz plot contains 12 data points, while the 
9-Hz plot contains only 10 data points between t = 0 and t = 1.0 s. 
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The sampling rate theorem and prediction of aliasing frequency 
 The sampling rate theorem, also called the Nyquist theorem, helps us avoid aliasing. The sampling rate 

theorem is stated as follows: 
To avoid aliasing, the sampling frequency must be greater than twice the highest frequency component of 
the analog signal. 

 The Nyquist criterion is 2sf f . The Nyquist criterion must be met in order to avoid aliasing.  
 To determine if there is aliasing, and, if so, to calculate the aliasing frequency, we apply the following rules, 

depending on the relative values of signal frequency f and sampling frequency fs:  
o If  2 ,  then there is no aliasingsf f . In words, if the sampling frequency is greater than twice the signal 

frequency, there is no aliasing.  

o 
2

If 2 ,  then  
3 s a sf f f f f f    . In words, if the sampling frequency is greater than two-thirds the 

signal frequency but less than twice the signal frequency, there is aliasing, and the aliasing frequency is 
equal to the absolute value of the difference between the sampling frequency and the signal frequency. 

o folding
folding

2
If  ,  then  

3
a

s a

f
f f f f

f

 
    

 
, where ffolding is the folding frequency, defined as 

2
s

folding

f
f  , and 

the ratio fa / ffolding is determined from the folding diagram. In words, if the sampling frequency is less 
than two-thirds of the actual frequency, the aliasing frequency must be calculated from the folding 
diagram. A summary of the procedure is given below:  
 Calculate the folding frequency, ffolding = fs /2. 
 Locate f / ffolding on the folding diagram, as plotted 

on the right. Note: For values of f / ffolding greater 
than 5.0, the folding diagram can easily be 
extended, following the obvious pattern.  

 Read straight down from the value of f / ffolding to 
obtain the value of fa / ffolding on the bottom 
(horizontal) axis.  

 Finally, calculate the aliasing frequency, 

folding
folding

a
a

f
f f

f

 
   
 

. 

o The folding frequency is half of the sampling 
frequency because of the Nyquist criterion – you must sample at a frequency at least twice the signal 
frequency in order to avoid aliasing. 

 

 A general equation [Shaparenko, B. and Cimbala, J. M., Int. J. Mech. Engr Education, Vol. 39, No. 3, pp. 
195-199, 2012] is available to determine the perceived frequency of any signal frequency f when sampled at 

any sampling frequency fs, whether there is aliasing or not: perceived NINTs
s

f
f f f

f

 
    

 
, where 

o NINT is the “nearest integer” function. 
o In Excel, use ROUND(x,0) to round real number x to 

the nearest integer. 
 

 Example: 
Given: A sine wave of frequency 10 Hz is sampled at a 

sampling frequency of 6 Hz. 
To do: Calculate the perceived frequency of the sampled 

signal. 
Solution: We follow the procedure outlined above. 
o For f = 10 Hz, 2f/3 = 2(10 Hz)/3 = 6.66666...  
o Since fs = 6 Hz is less than 2f/3 = 6.66666..., the 

simple formula cannot be used. We use the folding 
diagram to calculate the aliasing frequency fa.  

o The folding frequency is ffolding = fs/2 = 6/2 = 3 Hz.  
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o We calculate f /ffolding = 10/3 = 3.33333...  
o We locate this value of f /ffolding on the folding diagram (see above), and read down to the fa / ffolding axis at 

the bottom: At f /ffolding = 3.33333..., fa / ffolding = 0.66666...  
o Finally, we calculate the aliasing frequency: 

folding
folding

a
a

f
f f

f

 
   
 

 =   0.66666... 3 Hz  = 2 Hz. The perceived signal will be aliased with an aliasing 

frequency of 2 Hzaf  . 
 

Alternate Solution: We use the general equation for perceived frequency. 

o For f = 10 Hz and fs = 6 Hz, perceived

10
NINT 10 6 NINT 10 6 2 2 Hz

6s
s

f
f f f

f

               
  

. 

o We wee that the general equation yields the correct perceived frequency, i.e., the aliasing frequency in 
this case, without having to calculate the folding frequency or use the folding diagram. 

 

Discussion: 
o Since fs is less than 2f/3 in this example, we 

cannot use the simple difference equation to 
calculate the aliasing frequency. In other words, 

a sf f f   = 6 10 4 Hz  . Rather, fa = 2 Hz. 

o We simulate this example using Excel, and a plot 
of the actual (analog) signal and the perceived 
(discrete digital) signal is shown to the right. The 
perceived signal does not even look like a sine 
wave, but it does indeed have a frequency of 2 Hz, 
as predicted. 

 

 You are encouraged to use the accompanying Excel 
spreadsheet to experience aliasing – the spreadsheet is 
set up so that you can change the sampling frequency 
fs and watch the plot change. The signal frequency is 
10 Hz, but this, along with the amplitude, DC offset, and phase shift, can also be changed easily. 

 For example, if fs is changed to 4 Hz, a triangular wave pattern is seen as the perceived signal, with an 
aliasing frequency of 2 Hz, as shown below. Try to predict this aliasing frequency using the above procedure. 

 

 
 Finally, we note that the folding diagram and the general equation can always be used, regardless of the 

values of f and fs. In other words, whether or not there is aliasing, and whether or not fs < 2f/3, you can still 
calculate the perceived frequency by following the procedure outlined above, using either the folding 
diagram or the general equation for perceived frequency. 

 


