Digital Data Acquisition

Introduction

- Instruments and data can be either analog (continuous) or digital (discrete).
- In this learning module, we discuss digital data, and how to convert between analog and digital signals.

Review - Decimal to Binary Conversion

- While we are used to working with decimal numbers (base 10), computers and many modern instruments and electronic devices use binary numbers (base 2).
- Decimal numbers contain the digits 0 through 9 , while binary numbers contain only digits 0 and 1 .
- As a review, here is a listing of the first eight (including zero) decimal and binary numbers:

Decimal number	Binary number
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111

- There are simple techniques to convert from decimal to binary and vice-versa:
- Decimal to binary:
- Successively divide by 2 , as in the following example: convert the decimal number 29 into binary:

Value $/ \mathbf{2}$	Integer value	Remainder
$29 / 2=14+1 / 2$	14	1
$14 / 2=7+0 / 2$	7	0
$7 / 2=3+1 / 2$	3	1
$3 / 2=1+1 / 2$	1	1
$1 / 2=0+1 / 2$	0	1

Read this way, bottom to top.

- The binary number is obtained from the "remainder" column, reading from bottom to top (backwards); the answer is 11101.
- Binary to decimal:
- Add up each non-zero bit, from left to right, converting the binary number 11101 into decimal:
$\left.\begin{array}{|r|r|r|}\hline \text { Bit considered (underlined) } & \text { Value of the place } & \text { Value of the bit } \\ \hline 1110 \underline{1} & 1 & 1 \times 1=1 \\ \hline 111 \underline{0} & 2 & 0 \times 2=0 \\ \hline 11 \underline{1} 01 & 4 & 1 \times 4=4 \\ \hline 1 \underline{1} 101 & 8 & 1 \times 8=8 \\ \hline \underline{11101} & 16 & 1 \times 16=16 \\ \hline\end{array}\right\}$

Sum this column.

- The decimal number is obtained by summing the "Value of the bit" column; the answer is 29 .
- Example:

Given: The decimal number $x=4$
To do: Convert x to a binary 4-bit number.
Solution: We use the technique of successive division by 2, as per the following table:

Value $/ \mathbf{2}$	Integer value	Remainder
$4 / 2=2+0 / 2$	2	0
$2 / 2=1+0 / 2$	1	0
$1 / 2=0+1 / 2$	0	1

\uparrow| Read this way, |
| :--- |
| bottom to top. |

The resulting binary number is read from the bottom to the top, $x=0100$ in binary form. We have added a leading zero so that the result is a 4-bit number. If we were asked for 8 bits, we would write $x=00000100$.

- Some calculators have built-in binary-to-decimal and decimal-to-binary converters.

Analog to Digital Conversion (A/D conversion)

- Digital data acquisition is used in digital multimeters, digital oscilloscopes, computer-controlled data acquisition systems, and many other modern instruments and electronic devices such as cell phones.
- In all these examples, the conversion of an analog signal into a digital signal is accomplished with an electronic device called an analog-to-digital converter, which we abbreviate A/D converter.
- The goal of an A / D converter is to change an analog voltage signal into a digital number (in binary form).
- An A/D converter is labeled as N-bit, where the number of bits \boldsymbol{N} represents how many bits (ones and zeroes) are used in the digital output of the A/D converter. E.g., an 8 -bit converter creates an 8 -bit output.
- For simplicity, consider a 2-bit A/D converter $(N=2)$ with a range of -5 to 5 volts. The voltage range is divided into bins as follows: [Note: This is just one of several optional ways to assign the bins.]

Analog voltage (volts)	Bin number	Digital output (binary)	Assigned voltage, \boldsymbol{V} (volts)
$-5 \leq V<-2.5$	0	00	$V=V_{\min }+0.5 \Delta V=-3.75$
$-2.5 \leq V<0$	1	01	$V=V_{\min }+1.5 \Delta V=-1.25$
$0 \leq V<2.5$	2	10	$V=V_{\min }+2.5 \Delta V=1.25$
$2.5 \leq V<5$	3	11	$V=V_{\min }+3.5 \Delta V=3.75$

- The assigned voltage for each bin is here defined as half-way between the limits of the bin.
- The number of bins $=2^{N}$ for an N-bit A / D converter. For our example 2-bit converter, there are $2^{2}=4$ bins.
- The resolution of the A / D converter is defined as resolution $=\Delta V=\frac{\left(V_{\max }-V_{\min }\right)}{2^{N}}$.
- In the present example (2 -bit A/D converter), the resolution is $\Delta V=(5-(-5)) / 2^{2}=2.5 \mathrm{~V}$.
- Alternately, the resolution can be expressed as half of this value on either side, i.e., $\pm 1.25 \mathrm{~V}$. Another name for the resolution expressed this way is quantization error (also sometimes called quantizing error), defined as quantization error $= \pm \frac{1}{2}$ resolution $= \pm \frac{1}{2} \Delta V= \pm \frac{1}{2} \frac{\left(V_{\max }-V_{\min }\right)}{2^{N}}= \pm \frac{\left(V_{\max }-V_{\min }\right)}{2^{N+1}}$.
- In the present example (2 -bit A/D converter), the quantization error is $\pm 1.25 \mathrm{~V}$.
- This quantization error is too large for most practical applications. Notice that we cannot tell the difference between an input of 2.6 V and 4.9 V - both of these input voltages fall into bin number 3 , and would be assigned the output voltage of 3.75 V .
- We might express this reading as $V=3.75 \mathrm{~V}+/-1.25 \mathrm{~V}$ to reflect the resolution of the A/D converter.
- Obviously, the bigger N, the better the resolution. Consider, for example, a 12-bit A/D converter ($N=12$).
- The number of bins $=2^{12}=4096$, which is a digital output of 0 to 4095 .
- The resolution (for a converter with a range of -5 to 5 V) is $\Delta V=0.00244141 \mathrm{~V}$.
- The quantization error is $\pm \Delta V / 2= \pm 0.00122070 \mathrm{~V}$.
- Selected rows of the bin table for a 12 -bit A / D converter with a range of -5 to 5 V are shown below: [Note: Again, this is just one of several optional ways to assign the bins.]

Analog voltage (volts)	Bin number	Digital output (binary)	Assigned voltage, \boldsymbol{V} (volts)
$-5 \leq V<-4.9976$	0	000000000000	$V=V_{\min }+0.5 \Delta V=-4.998779$
$-4.9976 \leq V<-4.9951$	1	000000000001	$V=V_{\min }+1.5 \Delta V=-4.996338$
\ldots etc. \ldots	\ldots etc. \ldots	\ldots etc. \ldots	
$0 \leq V<0.00244$	2048	100000000000	$V=V_{\min }+2048.5 \Delta V=0.0012207$
\ldots etc. \ldots	\ldots etc. \ldots	\ldots etc. \ldots	
$4.9951 \leq V<4.9976$	4094	111111111110	$V=V_{\min }+4094.5 \Delta V=4.996338$
$4.9976 \leq V<5$	4095	111111111111	$V=V_{\min }+4095.5 \Delta V=4.998779$

- Comparing the two tables above, it should be obvious that the quantization error is much less for the 12 -bit A/D converter than for the 2-bit (with both converters covering the same range of -5 to 5 V .)
- Most commercially available A/D converters are $8,12,14$, or 16 -bit. [Those in our lab are 16 -bit.]
- The range of most modern A/D converters is adjustable, and can be either monopolar (e.g., 0 to $1 \mathrm{~V}, 0$ to 5 $\mathrm{V}, 0$ to 10 V , etc.) or bipolar (e.g., -1 to $1 \mathrm{~V},-10$ to 10 V , etc.).
- Dynamic range, $\boldsymbol{D R}=$ ratio of the largest voltage to the smallest change in voltage that can be measured, expressed in decibels (dB): monopolar: $D R=20 \log _{10}\left(2^{N}\right)$, bipolar: $D R=20 \log _{10}\left(2^{N-1}\right)$. Some authors call this the signal-to-quantization noise ratio, SQNR (same equations as for $D R$).

Discrete Sampling

- The main difference between analog and digital data acquisition is that digital systems sample the signal at discrete times only, not continuously.
- In a digital data acquisition system, no information is recorded at times in between the discrete sampling times.
- Consider a continuous signal that is sampled discretely at sampling frequency f_{s}, as sketched to the right. Here, $f_{s}=10 \mathrm{~Hz}$.
- For a given sampling frequency f_{s}, the time period Δt between samples is the inverse of $f_{s}, \Delta t=1 / f_{s}$. Here, Δt $=1 /\left(10 \mathrm{~s}^{-1}\right)=0.1 \mathrm{~s}$.
- Warning: If we are not careful, discrete sampling can lead to incorrect conclusions about the original signal!
- Two of the potential problems (clipping and aliasing) are discussed in detail below:

time, $t(\mathrm{~s})$
— original signal * discrete samples

Clipping

- If the original signal lies outside of the range of the A / D converter, it is clipped at the extreme value. In other words, any voltage greater than the upper limit of the A/D converter is assigned the maximum voltage of the A/D converter.
- Likewise, any voltage less than the lower limit of the A/D converter is assigned the minimum voltage of the A/D converter.
- For example, for a 12 -bit A / D converter with a range of -5 to 5 V , any voltage above 5 V is assigned the maximum voltage of 4.9988 V , according to the above bin table.
- In most cases, the user does not know that the signal has been clipped, and this can lead to incorrect results, although some data acquisition systems give a warning when the signal gets clipped.
- A clipped signal (same signal as above, but clipped when using a -5 to $5 \mathrm{~V} \mathrm{A/D}$ converter) is illustrated here.
- Notice that all voltages above 5 V in this example have been clipped to 5 V .
- Clipping would also occur if the voltage dips below -5 V .

Aliasing

time, $t(\mathrm{~s})$

- If the sampling frequency f_{s} is too low, the digital data acquisition system can actually measure an incorrect frequency! This is called aliasing.
- Consider a pure sine wave.
- The equation for a general sine wave signal is $g(t)=C+A \sin (2 \pi f t-\phi)$ or $g(t)=C+A \sin (\omega t-\phi)$, where f is the frequency (hertz), ω is the radian frequency (radians/s) and $\omega=2 \pi f, A$ is the amplitude (volts), C is the DC offset (volts), t is the time (seconds), and ϕ is the phase shift (radians).
- Aliasing is best illustrated by example.
- Suppose the original signal is a pure 10 Hz sine wave, with an amplitude of 3 volts, a DC offset of 3 volts, and a phase shift of 90 degrees ($\pi / 2$ radians):
- The frequency of the signal is $f=10.0 \mathrm{~Hz}$.
- The period of the signal is $T=1 / f=0.100 \mathrm{~s}$.
- The amplitude of the signal is $A=3.00$ volts.
- The DC offset of the signal is $C=3.00$ volts.
- The phase shift of the signal is $\phi=\pi / 2$ radians.
- For the sine wave used in this example, the equation of the signal is $g(t)=3+3 \sin (2 \pi(10) t-\pi / 2)$.
- This example sine wave is easily simulated in Excel or Matlab, as is the discrete sampling (and aliasing).
- Also, suppose we sample discretely (digitally) at a sampling frequency $f_{s}=15 \mathrm{~Hz}, 15$ times per second, or one sample every $\Delta t=1 /\left(15 \mathrm{~s}^{-1}\right)=0.06666 \ldots \mathrm{~s}$.
- A half second of both the analog signal and the discretely sampled data points is shown on the plot to the right.
- The aliasing is obvious - the perceived signal looks nothing like the original! In fact, the apparent frequency of the inferred or perceived signal (formed by connecting the discrete data points with straight line segments) is 5 Hz , and it is an odd-looking trapezoidal waveform rather than a sine wave.
- It turns out that if the sampling frequency f_{s} is greater than two-thirds of the actual frequency f, but less than twice the actual frequency, the perceived frequency (also called the aliasing frequency, $\boldsymbol{f}_{\boldsymbol{a}}$) is equal to the absolute value of the difference between the sampling frequency and the actual frequency.

- In equation form, the above statement is:
if $\frac{2}{3} f<f_{s}<2 f$, then $f_{a}=\left|f_{s}-f\right|$.
- In the above example, $f=10 \mathrm{~Hz}$ and $f_{s}=15 \mathrm{~Hz}$, so $\frac{2}{3} f=\frac{2}{3} 10=6.6666 \ldots$, which is less than $f_{s}=15 \mathrm{~Hz}$.

Therefore, the perceived frequency or aliasing frequency is $f_{a}=\left|f_{s}-f\right|=|15-10|=5 \mathrm{~Hz}$. This agrees with the observed perceived frequency on the above plot (red line).

- Here is another example. For the same sine wave ($f=$ 10 Hz), the signal is plotted to the right for 1 second.
Data are sampled discretely at $f_{s}=11 \mathrm{~Hz}$.
- Note that the perceived signal looks like a sine wave at 1 Hz ! We check the predicted aliasing frequency by using the above equation: Since $\frac{2}{3} f=\frac{2}{3} 10=6.6666 \ldots$, which is less than $f_{s}=11 \mathrm{~Hz}$, the perceived frequency or aliasing frequency is $f_{a}=\left|f_{s}-f\right|=|11-10|=1 \mathrm{~Hz}$.
 This agrees with the observed perceived frequency on the above plot (red line).
- One more example for the same sine wave $(f=10 \mathrm{~Hz})$: Data are sampled discretely at $f_{s}=9 \mathrm{~Hz}$, and the data are plotted to the right.
- Note that the perceived signal also looks like a sine wave at 1 Hz ! We check the predicted aliasing frequency by using the above equation: Since $\frac{2}{3} f=\frac{2}{3} 10=6.6666 \ldots$, which is less than $f_{s}=9 \mathrm{~Hz}$, the perceived frequency or aliasing frequency is $f_{a}=\left|f_{s}-f\right|=|9-10|=1 \mathrm{~Hz}$. This agrees with the observed perceived frequency on the plot to the right (red line).
- Comparing the plots for $f_{s}=11 \mathrm{~Hz}$ and $f_{s}=9 \mathrm{~Hz}$, they look similar at first glance, since the perceived frequency is 1 Hz in both cases. However, careful inspection reveals that the sampled data points occur at

time, $t(\mathrm{~s})$
- analog signal -*- discrete signal different phases of the signal in the two plots. Furthermore, the $11-\mathrm{Hz}$ plot contains 12 data points, while the $9-\mathrm{Hz}$ plot contains only 10 data points between $t=0$ and $t=1.0 \mathrm{~s}$.

The sampling rate theorem and prediction of aliasing frequency

- The sampling rate theorem, also called the Nyquist theorem, helps us avoid aliasing. The sampling rate theorem is stated as follows:
To avoid aliasing, the sampling frequency must be greater than twice the highest frequency component of the analog signal.
- The Nyquist criterion is $f_{s}>2 f$. The Nyquist criterion must be met in order to avoid aliasing.
- To determine if there is aliasing, and, if so, to calculate the aliasing frequency, we apply the following rules, depending on the relative values of signal frequency f and sampling frequency f_{s} :
- If $f_{s}>2 f$, then there is no aliasing. In words, if the sampling frequency is greater than twice the signal frequency, there is no aliasing.
-

If $\frac{2}{3} f<f_{s}<2 f$, then $f_{a}=\left|f_{s}-f\right|$. In words, if the sampling frequency is greater than two-thirds the signal frequency but less than twice the signal frequency, there is aliasing, and the aliasing frequency is equal to the absolute value of the difference between the sampling frequency and the signal frequency. If $f_{s}<\frac{2}{3} f$, then $f_{a}=\left(\frac{f_{a}}{f_{\text {folding }}}\right) f_{\text {folding }}$, where $f_{\text {folding }}$ is the folding frequency, defined as $f_{\text {folding }}=\frac{f_{s}}{2}$, and the ratio $f_{a} / f_{\text {folding }}$ is determined from the folding diagram. In words, if the sampling frequency is less than two-thirds of the actual frequency, the aliasing frequency must be calculated from the folding diagram. A summary of the procedure is given below:

- Calculate the folding frequency, $f_{\text {folding }}=f_{s} / 2$.
- Locate $f / f_{\text {folding }}$ on the folding diagram, as plotted on the right. Note: For values of $f /$ folding greater than 5.0, the folding diagram can easily be extended, following the obvious pattern.
- Read straight down from the value of $f / f_{\text {folding }}$ to obtain the value of $f_{a} / f_{\text {folding }}$ on the bottom (horizontal) axis.
- Finally, calculate the aliasing frequency,

$$
f_{a}=\left(\frac{f_{a}}{f_{\text {folding }}}\right) f_{\text {folding }}
$$

- The folding frequency is half of the sampling
frequency because of the Nyquist criterion - you must sample at a frequency at least twice the signal frequency in order to avoid aliasing.
- A general equation [Shaparenko, B. and Cimbala, J. M., Int. J. Mech. Engr Education, Vol. 39, No. 3, pp. 195-199, 2012] is available to determine the perceived frequency of any signal frequency f when sampled at any sampling frequency f_{s}, whether there is aliasing or not: $f_{\text {perceived }}=\left|f-f_{s} \cdot \mathrm{NINT}\left(\frac{f}{f_{s}}\right)\right|$, where
- NINT is the "nearest integer" function.
- In Excel, use $\operatorname{ROUND}(x, 0)$ to round real number x to the nearest integer.
- Example:

Given: A sine wave of frequency 10 Hz is sampled at a sampling frequency of 6 Hz .
To do: Calculate the perceived frequency of the sampled signal.
Solution: We follow the procedure outlined above.

- For $f=10 \mathrm{~Hz}, 2 f / 3=2(10 \mathrm{~Hz}) / 3=6.66666 \ldots$
- Since $f_{s}=6 \mathrm{~Hz}$ is less than $2 f / 3=6.66666 \ldots$, the simple formula cannot be used. We use the folding diagram to calculate the aliasing frequency f_{a}.
- The folding frequency is $f_{\text {folding }}=f_{s} / 2=6 / 2=3 \mathrm{~Hz}$.

- We calculate $f / f_{\text {folding }}=10 / 3=3.33333 \ldots$
- We locate this value of $f / f_{\text {folding }}$ on the folding diagram (see above), and read down to the $f_{a} / f_{\text {folding }}$ axis at the bottom: At $f / f_{\text {folding }}=3.33333 \ldots, f_{a} / f_{\text {folding }}=0.66666 \ldots$
- Finally, we calculate the aliasing frequency:
$f_{a}=\left(\frac{f_{a}}{f_{\text {folding }}}\right) f_{\text {folding }}=(0.66666 \ldots)(3 \mathrm{~Hz})=2 \mathrm{~Hz}$. The perceived signal will be aliased with an aliasing
frequency of $f_{a}=2 \mathrm{~Hz}$.
Alternate Solution: We use the general equation for perceived frequency.
- For $f=10 \mathrm{~Hz}$ and $f_{s}=6 \mathrm{~Hz}, f_{\text {perceived }}=\left|f-f_{s} \cdot \mathrm{NINT}\left(\frac{f}{f_{s}}\right)\right|=\left|10-6 \cdot \mathrm{NINT}\left(\frac{10}{6}\right)\right|=|10-6 \cdot 2|=2 \mathrm{~Hz}$.
- We wee that the general equation yields the correct perceived frequency, i.e., the aliasing frequency in this case, without having to calculate the folding frequency or use the folding diagram.

Discussion:

- Since f_{s} is less than $2 f / 3$ in this example, we cannot use the simple difference equation to calculate the aliasing frequency. In other words, $f_{a} \neq\left|f_{s}-f\right|=|6-10|=4 \mathrm{~Hz}$. Rather, $f_{a}=2 \mathrm{~Hz}$.
- We simulate this example using Excel, and a plot of the actual (analog) signal and the perceived (discrete digital) signal is shown to the right. The perceived signal does not even look like a sine wave, but it does indeed have a frequency of 2 Hz , as predicted.

$\begin{array}{lllllllllll}0.0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0\end{array}$
time, $t(\mathrm{~s})$
- analog signal \rightarrow - discrete signal
- You are encouraged to use the accompanying Excel spreadsheet to experience aliasing - the spreadsheet is set up so that you can change the sampling frequency f_{s} and watch the plot change. The signal frequency is 10 Hz , but this, along with the amplitude, DC offset, and phase shift, can also be changed easily.
- For example, if f_{s} is changed to 4 Hz , a triangular wave pattern is seen as the perceived signal, with an aliasing frequency of 2 Hz , as shown below. Try to predict this aliasing frequency using the above procedure.

- Finally, we note that the folding diagram and the general equation can always be used, regardless of the values of f and f_{s}. In other words, whether or not there is aliasing, and whether or not $f_{s}<2 f / 3$, you can still calculate the perceived frequency by following the procedure outlined above, using either the folding diagram or the general equation for perceived frequency.

