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OBJECTIVE 
 

The objective of this experiment is to design and implement an automatic controller for 
regulating TRIGA reactor power using a state-of-the-art UNIX network compatible 
controller integrated with a development, test, and monitoring environment based on the 
Mathworks MATLAB/SIMUILINK operating in a remote UNIX host computer.   The 
controller is designed and tested with MATLAB/SIMULINK which you have used 
throughout the earlier labs.  In this lab, the necessary real-time control software in the C 
computer language is automatically generated via the SIMULINK C-code generation 
option, directly from your SIMULINK block diagram, and then downloaded to the real-time 
control computer.   The nonlinear aspects of nuclear reactor control will be dramatized by 
implementing a controller design for one power level and monitoring its diminished 
capacity as power is changed to a higher level. 
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INTRODUCTION 
 
As you have learned in previous experiments, there is always some difference between 
the real-world and the mathematics we use to describe it.  If we had a perfect 
mathematical description of a system, we could precompute the actions required to 
change operating conditions of the system and not even bother to measure the 
consequence of those actions.  This would be called Open Loop Control.  On the other 
hand, Feedback Control provides a means to accommodate uncertainties between our 
mathematical model and the performance of the real-world system.  By taking 
measurements of system variables we can adjust actions to that needed to accomplish 
performance objectives.  For a reactor system, the control actions can be accomplished 
manually with a human operator manipulating control rod positions or with an automatic 
control system.  A representation of an elementary automatic reactor power controller is 
given in Figure B6-1 where the controller computes a control rod speed demand signal 
zd(t) simply as a scalar gain Gc times an error signal e(t); e.g., the speed demand signal 
zd(t)=Gce(t) is computed by subtracting the power measurement nr(t) from a demand 
signal nd(t); i.e., e(t)=nd(t)-nr(t).  The control rod mechanism dynamically responds to 
position the rod and thus dynamically change control rod reactivity ρr(t) until power 

matches the demand signal. There are two major approaches to understanding and 
designing control systems: 1) Time Domain Analysis and 2) Frequency Domain 
Analysis. 
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Figure B6-1  Simple Feedback Control Loop. 
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Time Domain Analysis 
 
To understand how the controller operates in the time domain it is necessary to discuss 
the error signal e(t).  As e(t) becomes very small, the power measurement must be 
approaching the value of the demand signal.  Consider the following example.  It is desired 
to change reactor power to a new level.  To accomplish this goal, a step change in the 
demand signal nd(t) could be applied.  A possible response is shown in Figure B6-2 where 

the step change is applied at t=t'.  In this example the actual power of the reactor responds 
slower than the input demand.  To reduce the response time, a modification in the 
controller is needed.  Clearly, if the value of Gc is increased, the subsequent value of zd(t) 

will be magnified (initially), producing a greater velocity of the control rod.  Power will 
respond more quickly and e(t) will approach  zero faster. 
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Figure B6-2 Time Domain Description of Elementary Power Controller Showing 

Power nr(t) and Error Signal e(t) Response to a Step Change in 
Power Demand nd(t). 

 
The function performed by the scalar Gc  is generally not limited to proportionality 

constants but can be a mixture of constants, integrators, and differentiators.  Depending on 
the application, all three types of controllers may be used simultaneously, resulting in the 
PID controller.  For this introductory control experiment, such advanced controllers will not 



B-6-4 
 
be explored.  However, you will setup, program, and operate the controller using a special 
Secondary Control Rod installed in the central thimble of the TRIGA core. 
 
In addition to reducing the response time, other parameters should be considered, such as 
maximum overshoot and settling time.  Maximum Overshoot  occurs at the highest value 
of nr(t) as it deviates from a step change in input demand signal.  Settling time is the time 

in which the step response settles down to about 5 percent of the maximum overshoot. 
 
Trade-offs are commonly experienced when a designer wants to optimize more than one 
variable.  For instance, if the maximum overshoot needed to be reduced, the settling time 
usually becomes lengthened. 
 
 
Frequency Domain Analysis 
 
The main approach to understanding and designing a feedback control system is analysis 
in the frequency domain.  By working in this domain a control systems engineer can more 
readily obtain mathematical solutions, design controllers and investigate and predict 
stability and performance characteristics of the system. 
 
A very important concept in the frequency domain is the transfer function which was 
developed in the reactor frequency response experiment and further examined in the 
reactor noise experiment.  Recall that the transfer function of a system is the Laplace 
transform of the output divided by the Laplace transform of the input (assuming zero initial 
conditions).  For a one delayed neutron reactor, the transfer function from reactivity input 

 to reactor power δNr(s) (B4.23) is δ˜ ρ (s)
 

GR(s) =  
δNr(s)
δ˜ ρ (s)

 =  
nr0

Λ( ) s + λ( )

s s + β
Λ( )   (B6.1) 

 
(A capital letter or a ~ above a variable denotes the Laplace transform of the 
corresponding lower case time domain variable.) 
 
By obtaining a transfer function for each component in Figure B6-1, they can be readily 
combined to design a feedback controller.  By representing the control rod drive dynamics 
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with Gr(s), the dynamics of the system in the frequency domain can be summarized in 

block diagram form as shown in Figure B6-3. 
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Figure B6-3  Transfer Function Block Diagram of Reactor Control. 
 
 
The characteristics of a simple closed loop feedback controller is governed by the closed 
loop identity relationship.  This identity relates the transfer function of the closed loop 
system to the individual transfer functions in the forward and feedback path of the system.  
The transfer functions along a path are simply combined by multiplication; i.e., the forward 
path of Figure B6-3 represented by G(s) is equal to GcGr(s)GR(s).  Figure B6-4 shows a 

general feedback controlled system where dynamical elements H(s) are also contained in 
the feedback path.   

 
G(s)Σ

H(s)

+
−

R(s) E(s) Y(s)

 
 

Figure B6-4 General Form of Feedback Control: R(s) is the Reference (demand) 
Signal; Y(s) is the System Output Signal. 

The closed loop identity, which relates output response Y(s) to the demand or reference 
function R(s) is 

 
Y(s)
R(s)

=
G(s)

1+ G(s)H(s)
 (B6.2) 
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In the reactor controller of Figures B6-1 and B6-3 there are no dynamical elements in the 
feedback path so that H(s) is simply unity. 
 
By initially assuming ideal signal conditioning and rod drive dynamics which 
instantaneously provides a speed that matches the speed demand signal, control rod 
position dynamics can be represented as a pure integral function which has a Laplace 
transform equal to 1/s.  The control rod transfer function Gr(s) can be simply represented 
as W/s where W is the total reactivity worth of the rod and rod speed zr is computed in 

units of fraction of core length per second (positive in the direction of removal from the 
reactor).  The closed loop transfer function of the elementary controlled system in Figures 
B6-1 and B6-3 for a one-delayed neutron group reactor without temperature feedback is 
thus  

 

Y(s)
R(s)

 =  δNr(s)
δNd(s)

 =  

Gc W s( ) nr0 Λ( ) s + λ( )
s s +β Λ( )

1 +  
Gc W s( ) nr0 Λ( ) s + λ( )

s s +β Λ( )

  (B6.3) 

 
 
 
which can be algebraically manipulated into the ratio of two polynomials 

 
δNr (s)
δNd(s)

 =  
GcWnr0( ) s + λ( )

Λ ⋅ s3 +  β ⋅s2 +  GcWnr0( )⋅s +  GcWnr0( )λ 
 (B6.4) 

 
The denominator polynomial is the characteristic equation.  The 3 roots of this equation 
are the exponents in the exponential functions of a time domain response, similar to that 
studied in the digital simulation laboratory (B1) and the rod calibration experiment (B2).  As 
indicated, the controller gain Gc is located in two terms of the characteristic equation.  By 

adjusting the gain, the roots of the characteristic equation are changed which results in a 
different dynamical system response. 
 
Unlike all the reactor analysis and experiments conducted in this laboratory sequence, the 
roots of the characteristic (B6.4) will invariably include complex numbers; i.e., ri=σi±jωi, 
i=1,2,3 and j = −1.  The roots of the open loop reactor kinetics characteristic equation 
(inhour equation A1.6 and B2.4) are always real.  Generally, this is not true for higher order 
dynamical systems and in particular for feedback controlled systems.  When complex roots 
occur, they always occur in complex conjugate pairs, ri=σi+jωi and ri+1=σi-jωi.  The 
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combination of exponential functions with these complex exponents will produce a damped 
sinusoidal response (assuming that the real part σi is negative,Ae .  If σi is 0, a 
self-excited oscillatory response at the frequency ωi will be observed, A sin(ωt).  If σi is 
positive, the system is unstable and the system output (reactor power) will grow until the 
system is destroyed, a safety system intervenes, or the automatic controller reaches the 
limit of control capability that it has available (runs out of rod positioning capability). 

σi t sin(ωt)

 
Most any linear systems analysis computer software package will include a polynomial root 
solving subroutine.  (The SIMULINK simulation language includes such functions.)  A 
standard presentation of a controller analysis is a complex plane plot of characteristic 
equation root locations versus controller gain.  Such a plot is called a root locus plot.   
Figure B6-5 shows a root locus of (B6.4) as the gain Gc is varied from 0.0 to 2.8 with 
parameters nr0=1, β=0.007, λ=0.1, Λ=0.000035, and W=0.0024.  At a gain Gc of 0, the 
system has two roots at the origin, σi=0, ωi=0, and a third root at σ=-200.  As gain is 

increased ever so slightly above 0, the two roots at the origin form a complex conjugate 
pair which trace out a circle until the gain exceeds about 1.0. 
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Figure B6-5  Root Locus With Ideal Control Rod Drive. 
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As gain is increased further, the roots again become real with one approaching σ=-1 and 
the other becoming increasingly negative.  For this ideal closed loop system, it can be 
shown that it is stable for all positive gains.  However, implementation of a controller with a 
large gain would be susceptible to realistic reactor noise and other uncertainties and would 
not be practical. 
 
A measure of controller performance is the damping ratio ζ of the dominant roots.  The 
damping ratio is defined as the ratio of the real part of the root to the magnitude of  the 
root; i.e., ζ = σ i σi

2 + ω i
2 .  The usefulness of the damping ratio is that it readily identifies 

the expected time response of the system due to that root.  Figure B6-6  shows example 
step responses of a 2nd order system with several damping ratios. 
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Figure B6-6  Second Order System Response to Step Inputs. 
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The response at a damping ratio of 0.707 appears attractive in that it is a fast response 
with very little overshoot.  On the root locus plot, a diagonal line at 45 degrees indicates 
the 0.707 damping ratio condition.  A typical goal of a control system design is to seek a 
damping ratio in the range of 0.5 to 0.9.  Based on the root locus of Figure B6-5, a 
controller gain of 0.56 provides a damping ratio of 0.707.  (The units of this gain are 
fraction of core length per second per fractional power error; If the error between the 
demand and measured relative powers is 0.1, the resulting control rod speed demand 
signal would be 0.056 fraction of core length per second with this gain; in-other-words, if 
there is a 10% power error the speed demand would be 5.6% of core length per second.) 
The root locus analysis presented in Figure B6-5 is for a mythical control rod drive 
mechanism which can instantaneously change control rod speed to match a demand 
signal.  A more realistic assumption would be to assume that the control rod speed 
responds as a pure exponential with a time constant of τ.  This is also called a first order 
lag response.  The resulting control rod drive transfer function is then 

 

Gr =  
δ˜ ρ r (s)
δZd(s)

 =  
W

s τs +1( )  (B6.5) 

 
and the corresponding closed loop transfer function is 

 
δNr (s)
δNd(s)

 =  
GcWnr0( ) s + λ( )

Λτ ⋅ s4  +  1+βτ( )⋅s3  +  βs2 +  GcWnr0( )⋅ s +  GcWnr0( )λ 
 (B6.6) 

 
This new denominator polynomial again has a dependency on the controller gain but now 
also depends on the control rod dynamics given the time constant τ.  Unlike the controller 
with an idealized rod drive mechanism, the stability of the system with the more realistic 
controller is dependent on the controller gain selection.  A critical value for Gc can be 

determined which will cause the roots of the characteristic equation to have positive real 
parts and lie to the right of the origin in the root locus plot.  Figure B6-7 shows a series of 
root locus analysis for the rod time constants of 1, 2, and 4 seconds.  The root locus with 
the 1 second time constant appears very similar to the ideal case for gains less than 0.9.  
However, with a time constant of 2 or 4 seconds, a response with a damping ratio of 0.707 
cannot be obtained and the system will become unstable at a lower gain value. 
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Figure B6-7  Root Locus With Control Rod Dynamics 
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EQUIPMENT 
 
The equipment used in this laboratory is a Gateway computer with National Instruments 
data acquisition card.  The software is the real-time workshop option of the Mathworks 
MATLAB/Simulink.  The real time target option for a windows-based system is used. 
 
Figure B6-1 is physically realized in Figure B6-8, excluding the sensor and driver sections.  
Inside the computer a new value of power is obtained at discrete sampling intervals T.  
Using k to denote an integer constant, the discrete nature of computer time is thus 
represented  as t=kT.  An output signal will be setup by subtracting the feedback signal 
nr(kT) from a setpoint nd(kT)and multiplied by the controller gain Gc.  The SIMULINK block 

diagram representing this controller is presented at the top Figure B6-8, cc_simrt.m   
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Figure B6-8  SIMULINK  Controller Specification. 

 
 
The block labeled Nr at the top of Figure B6-8 exemplifies a key feature of SIMULINK for 
organizing large and complex simulations in to logical and manageable chunks.  The 
computations and processing represented by the Nr block are shown in the shaded region 
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of the Figure.   On the top level SIMULINK block diagram shown at the top of the Figure, 
one would simply double click on the Nr block to reveal its processing definitions in a 
secondary window.  As shown, the Nr block receives a reactivity rate demand signal from 
the output of the controller, gc, and converts it to an appropriate voltage for a Digital to 
Analog Converter (DAC)  to convert and apply to the rod drive mechanism.   The Nr block 
also defines the digitization of the voltage signal representing the reactor power 
measurement to engineering units. 
 
 
EXPERIMENT OVERVIEW 
 
The experiment is designed to demonstrate a key element of reactor dynamics in feedback 
control.  Even though you may never be a control engineer, it is your responsibility as a 
Nuclear Engineer to inform control specialists, who may not be familiar with reactor 
dynamics, about this characteristic.  The result of the nonlinear characteristic of reactor 
dynamics in a feedback control system is that a change in power level is equivalent to 
changing the gain in the controller.  To demonstrate this effect in an experiment, we will 
start at a reactor power level 100 watts which we will define as a relative power of 1.0, 
nr0=1.0, and select a controller gain which provides a well-damped response.  As 

discussed in class, a closed loop controller with an ideal signal conditioning and control rod 
drive mechanism, which could instantaneously change speed to match a demand signal, 
would be stable at all controller gains.  We, of course, do not have an ideal rod or signal 
conditioning, and there is a gain which will cause the controlled system to be unstable.  
Instead of experimentally increasing the gain in search of this unstable condition, we are 
instead going to approach the unstable condition by increasing the reactor power (in small 
steps).  The purpose of this exercise is to dramatize that changing reactor power level is 
like changing the controller gain in a closed loop reactor power controller.  We will increase 
reactor power to a maximum of 1 Kilowatt, nr0=10, a gain increase of a factor of 10.  We 

will do this in small steps not to exceed 25% of the current power level or 100 watts 
whichever is less.  At each power increase, we will record the overshoot and settling time 
and thus estimate the frequency and damping ratio of the dominant root which can then be 
plotted on a root locus plot.  When things have equilibrated, reactor noise analysis will also 
be conducted to obtain the power spectrum before deciding on the next power increase. 
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EXPERIMENT PROCEDURES 
 
In order to become familiar and comfortable with the equipment setup, a rod position 
control experiment will be first conducted with the reactor in a standby condition.   The 
position control experiment is conducted with the reactor in a standby condition (no power) 
and we can afford to push the controlled system to an unstable response (undamped 
sinusoid) with a certain value of gain.  The fact that we can make the position control 
experiment unstable proves that there are additional dynamics beyond a simple time 
constant.  (In class we showed, that if the control electronics and rod dynamics were 
strictly a first order system described with a simple time constant τ, it would be stable at all 
controller gains.) 
 


