TABLE 7-5 (from Çengel and Cimbala, *Fluid Mechanics: Fundamentals and Applications*, McGraw-Hill, 2006) Some common established nondimensional parameters or Π s encountered in fluid mechanics and heat transfer; *A* is a characteristic area, *D* is a characteristic diameter, *f* is a characteristic frequency (Hz), *L* is a characteristic length, *t* is a characteristic time, *T* is a characteristic (absolute) temperature, *V* is a characteristic velocity, *W* is a characteristic width, \dot{W} is a characteristic power, ω is a characteristic *radial* frequency or angular velocity (radians/s). Other parameters and fluid properties in these Π s include: c = speed of sound, c_p , $c_v =$ specific heats, $d_p =$ particle diameter, $D_{AB} =$ species diffusion coefficient, *h* = convective heat transfer coefficient, $h_{fg} =$ latent heat of evaporation, *k* = thermal conductivity and also *k* = ratio of specific heats, *P* = pressure, $T_{sat} =$ saturation temperature, $\dot{V} =$ volume flow rate, $\alpha =$ thermal diffusivity, $\beta =$ coefficient of thermal expansion, $\lambda =$ mean free path length, $\mu =$ viscosity, $\nu =$ kinematic viscosity, $\rho =$ fluid density, $\rho_f =$ liquid density, $\rho_s =$ solid density, $\rho_v =$ vapor density, $\sigma_s =$ surface tension, and $\tau =$ shear stress.

Name	Definition	Ratio of significance
Archimedes number	$\operatorname{Ar} = \frac{\rho_s g L^3}{\mu^2} (\rho_s - \rho)$	gravitational force viscous force
aspect ratio	$AR = \frac{L}{W} \text{ or } \frac{L}{D}$	$\frac{\text{length}}{\text{width}}$ or $\frac{\text{length}}{\text{diameter}}$
Biot number	$\operatorname{Bi} = \frac{hL}{k}$	convective heat transfer conduction heat transfer
Bond number	$Bo = \frac{g(\rho_f - \rho_v)L^2}{\sigma_s}$	gravitational forces surface tension forces
cavitation number	Ca (sometimes σ_c) = $\frac{P - P_v}{\rho V^2}$ (sometimes $\frac{2(P - P_v)}{\rho V^2}$)	pressure - vapor pressure inertial pressure
Darcy friction factor	$f = \frac{8\tau_w}{\rho V^2}$	wall friction forces inertial forces
drag coefficient	$C_D = \frac{F_D}{\frac{1}{2}\rho V^2 A}$	drag force dynamic force
Eckert number	$Ec = \frac{V^2}{C_P T}$	kinetic energy enthalpy
Euler number	Eu = $\frac{\Delta P}{\rho V^2} \left(\text{sometimes } \frac{\Delta P}{\frac{1}{2}\rho V^2} \right)$	pressure difference inertial pressure
Fanning friction factor	$f_F = \frac{2\tau_w}{\rho V^2}$	wall friction forces inertial forces
Fourier number	Fo (sometimes τ) = $\frac{\alpha t}{L^2}$	physical time thermal diffusion time
Froude number	$Fr = \frac{V}{\sqrt{gL}} \left(\text{sometimes } \frac{V^2}{gL} \right)$	inertial forces gravitational forces
Grashof number	$\mathrm{Gr} = \frac{g\beta \left \Delta T\right L^3 \rho^2}{\mu^2}$	buoyancy forces viscous forces
Jakob number	$\mathbf{Ja} = \frac{C_P \left(T - T_{\mathrm{sat}}\right)}{h_{fg}}$	sensible energy latent energy
Knudsen number	$Kn = \frac{\lambda}{L}$	mean free path length characteristic length

Name	Definition	Ratio of significance
Lewis number	$Le = \frac{k}{\rho C_P D_{AB}} = \frac{\alpha}{D_{AB}}$	thermal diffusion species diffusion
lift coefficient	$C_L = \frac{F_L}{\frac{1}{2}\rho V^2 A}$	lift force dynamic force
Mach number	Ma (sometimes M) = $\frac{V}{c}$	flow speed speed of sound
Nusselt number	$Nu = \frac{Lh}{k}$	convection heat transfer conduction heat transfer
Peclet number	$\operatorname{Pe} = \frac{\rho LVC_p}{k} = \frac{LV}{\alpha}$	bulk heat transfer conduction heat transfer
power number	$N_{\rm P} = \frac{\dot{W}}{\rho D^5 \omega^3}$	power rotational inertia
Prandtl number	$\Pr = \frac{\nu}{\alpha} = \frac{\mu C_P}{k}$	viscous diffusion thermal diffusion
pressure coefficient	$C_{p} = \frac{P - P_{\infty}}{\frac{1}{2}\rho V^{2}}$	static pressure difference dynamic pressure
Rayleigh number	$Ra = \frac{g\beta \left \Delta T\right L^3 \rho^2 C_P}{k\mu}$	buoyancy forces viscous forces
Reynolds number	$\operatorname{Re} = \frac{\rho VL}{\mu} = \frac{VL}{v}$	inertial forces viscous forces
Richardson number	$\mathrm{Ri} = \frac{L^5 g \Delta \rho}{\rho \dot{V}^2}$	buoyancy forces inertial forces
roughness ratio	$\frac{\varepsilon}{L}$	roughness height characteristic length
Schmidt number	$Sc = \frac{\mu}{\rho D_{AB}} = \frac{v}{D_{AB}}$	viscous diffusion species diffusion
Sherwood number	$\mathrm{Sh} = rac{VL}{D_{AB}}$	overall mass diffusion species diffusion
specific heat ratio	k (sometimes γ) = $\frac{c_p}{c_v}$	enthalpy internal energy
Stanton number	$\operatorname{St} = \frac{h}{\rho C_p V}$	heat transfer thermal capacity
Stokes number	Stk (sometimes St) = $\frac{\rho_p d_p^2 V}{18\mu L}$	particle relaxation time characteristic flow time
Strouhal number	St (sometimes S or Sr) = $\frac{fL}{V}$	characteristic flow time period of oscillation
Weber number	We = $\frac{\rho V^2 L}{\sigma_s}$	inertial forces surface tension forces