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Primary Dimensions (Review)  
 There are seven primary dimensions. All other dimensions can be formed by combinations of these. The 

seven primary dimensions are, along with their symbols: 
 

 mass length time temperature current amount of light amount of matter 
 {m} {L} {t} {T} {I} {C} {N} 
 

 The primary dimensions of variables in an experiment or analysis can be used to our advantage – to reduce 
the required amount of effort.  

 

Dimensional Homogeneity  
 We state the law of dimensional homogeneity as “Every additive term in an equation must have the same 

dimensions.” 
 Example: The total energy (E) of a system is composed of internal energy (U), kinetic energy (KE), and 

potential energy (PE), i.e., KE PEE U   . 
 Let’s look at the primary dimensions of each term in this equation: 
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 The law of dimensional homogeneity is the basis for the useful technique of dimensional analysis, which we 
discuss next. 

 

Dimensional Analysis and the Method of Repeating Variables 
 Dimensional analysis is a simple, powerful tool that is useful in all disciplines (but unfortunately, is usually 

taught only in fluid mechanics). 
 The goal of dimensional analysis is to reduce the number of independent variables in a problem. 
 We accomplish this by converting all dimensional variables into nondimensional parameters, called “Pi’s”, 

and given the symbol  (upper case Greek letter pi). 
 The Method of Repeating Variables has 6 steps: 

 

Step 4: Choose j repeating parameters.  

Step 3: Set the reduction, j. As a first guess, set j as the number of primary 
dimensions. Calculate k, the expected number of s, k = n – j.  

Step 6: Write the final functional relationship and check your algebra.  

Step 5: Construct the k s (may need to reset j), and manipulate as necessary. 

Step 2: List the primary dimensions of each of the n parameters.  

Step 1: List the parameters in the problem and count their total number, n. 

 
 

 The technique is best learned by example and practice. Let’s look, for example, at measurement of the 
aerodynamic drag on a car. 



 Example 
Given: The drag force FD on a car is a function of four 

variables: air velocity V, air density , air viscosity , 
and the frontal area A of the car. 

To do: Express this relationship in terms of 
nondimensional variables. 

Solution: We follow the six steps above for the method of 
repeating variables. 
o Step 1: We list and count the variables. 

FD = function of (V, , , A). There are 5 variables, so n = 5. 
o Step 2: We list the primary dimensions of each variable: 

 

{FD} = {mL/t2}, {V} = {L/t}, {} = {m/L3}, {} = {m/Lt}, and {A} = {L2} 
 

o Step 3: We set the reduction j. As our first guess, we set j equal to the number of primary dimensions 
represented in the problem. Here, we see mass (m), length (L), and time (t), so we set j = 3. [Note: If 
this does not work, we decrease j by 1 and start over from here.]  
We expect k = n – j = 5 – 3 = 2 s. 

o Step 4: We choose j repeating parameters. Since j = 3, we choose V, , and A. Note: This is the 
trickiest part of the process. How do we know which parameters to pick as the repeating parameters? 
Here are some guidelines or “rules” about picking the repeating parameters: 
 

1. Never pick the dependent variable (the one on the left) – in this case, we cannot pick FD. 
2. The repeating variables cannot by themselves form a dimensionless group. 
3. All the primary dimensions in the problem must be represented by the j repeating parameters. 
4. Do not pick variables that are already dimensionless (e.g., angles). 
5. Do not pick two variables with the same dimensions or with dimensions that are powers of each 

other (e.g., cannot pick both a length {L} and an area {L2} – in terms of dimensional analysis, 
these are really the same, since they both represent only a length). 

6. Pick “common” variables, since the repeating variables end up appearing in more than one . 
(That’s why we call them “repeating variables” in the first place!) 

7. Whenever possible, choose simple variables (e.g., pick {L} instead of {mL2t/T} if appropriate.) 

 

o Step 5: Generate the s: 

       
1

0 0 0 2 1 2 1 3 2
1 2 3

 dependent Pi   [the dependent Pi contains the dependent variable on the left side]

mL L m
m L t dimensionless L m t L

t t L

Equate exponents: m  0 1

a b c
D

a b
c b a a b c

F V A

     

  

             
     

  

2 1 1
1 2

  1

                               t   0 2   2

                               L  0 1 3 2   1

Thus, a b c D
D D

b b

a a

a b c c

F
F V A F V A

V A
 


  

  
      
       

   

 

We “manipulate” by multiplying by a constant (this is perfectly okay in dimensional analysis, since a 
constant has no dimensions, and we are not changing the nondimensional nature of the ). We 
manipulate in order to get agreement with the commonly accepted and published dimensionless 

parameter called the drag coefficient, i.e., we set 1 21
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Similarly, we generate the second  by using the same three repeating variables, i.e., we set 
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In this case, we “manipulate” by taking the inverse of the  (we argue that since the  is 
dimensionless, its inverse is also dimensionless). We do this so that our final nondimensional 
parameter is one of the standard, published dimensionless parameters, namely, the well-known 
Reynolds number: 
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    where we recognize that A  is a length scale of the car. 

o Step 6: We write the final functional relationship between the s. In general, this relationship is of 
the form  1 2 3 k function , ,...      for k s. In this example, k = 2, so our final result is 
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 What have we achieved? Well, let’s compare the number of parameters in the original problem with that 
of the reduced (nondimensionalized) problem: 
o Original problem: FD = function of (V, , , A)  5 parameters (drag force is a function of 4 

variables). 
o Reduced problem: CD = function of Re   2 parameters (drag coefficient is a function of 1 

nondimensional parameter, namely the Reynolds number). 
 We have reduced the number of independent parameters by 3, i.e., from 4 to 1! 
 This saves us significant time and money on experiments and/or computational analysis since we need to 

vary only one parameter (Reynolds number) rather than 4 parameters (velocity, density, viscosity, and 
frontal area). This is the power of dimensional analysis. 
 

 
 

 Finally, in some simple dimensional analysis problems, k = 1 (only one nondimensional parameter is 
formed). In Step 6, then, 1 = function(nothing). This makes sense only if 1 = constant. In such cases, 
the method of repeating variables produces an equation, 1 = constant, not merely a relationship 
between s. The equation is correct, but the constant is unknown, and must be found experimentally. 

 


