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Introduction  
 When setting up an experiment, it is important to first take some time to carefully design the experiment. 
 In this module we discuss how to design an experiment. A particularly helpful reference book for this 

material is Elmer E. Lewis, Introduction to Reliability Engineering, 2nd ed., Wiley, TA169.L47 1996, Ch. 4. 
 

The basics of experimentation  
Below are listed the basic steps for conducting an experiment. Each of these steps is critical to a successful 
experiment.  
 Define the problem 

o This may seem obvious, but it is really the most important and most critical step. Namely, the required 
output of the experiment must be clearly defined.  

o Examples include:  
 Determine the operating temperature range of a voltmeter such that the overall error is less than 

some value.  
 Determine the optimum low-pass filter for an audio system that minimizes cost while still meeting 

performance specifications.  
 Design the experiment 

o This step involves many components, including (but not limited to):  
 Conduct a literature survey.  
 Perform an analytical analysis (as far as possible).  
 Select the variables to be measured. Note: Dimensional analysis is useful here, since it can 

potentially decrease the number of required independent variables to be measured.  
 Select the instruments to be used in the experiment.  
 Estimate the experimental uncertainties.  
 Select or design a test matrix. (Test matrices are discussed in detail in this module.) 
 Design the test rig and the experimental procedure.  

 Construct the experiment 
 Gather data 
 Analyze the data 
 Do confirmation experiments and/or follow-up experiments [if necessary].  
 Interpret and report results/conclusions 

 

Other issues 
 There are other issues that enter into consideration when conducting an experiment, such as  

o cost  
o schedule  
o personnel  

 These issues will not be addressed here.  
 In this learning module, emphasis is placed on one very critical aspect of experimental design, namely 

choosing a test matrix. 
 

Choosing a test matrix 
 By way of introduction, suppose some experiments must be conducted in order to determine an optimum 

value of parameter X, which is a function of parameters a, b, c, ..., i.e.,  X = X(a, b, c, ...) .  
 The optimum value can either be a maximum (for example best efficiency, longest life, or highest strength) 

or a minimum (for example shortest time, minimum cost, lowest pressure drop, or smallest surface 
nonuniformity). In all the examples below, it is assumed that the optimum value of X is the maximum value 
of X. The analysis is similar if X is to be minimized instead.  

 In this learning module, you will learn how to choose a test matrix so that the number of necessary 
experimental runs (and therefore cost and time) is kept to a minimum.  

 It should be noted that parameters a, b, c, ... can be independent of each other (e.g., a does not influence the 
value of b or c and vice-versa), or dependent on each other (e.g., if a changes, b and/or c also change). 

 The dependence or independence of the parameters on each other impacts the test matrix significantly.  
 To illustrate, consider for simplicity a function X of only two parameters, a and b, i.e., X = X(a, b).  
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 In the simplest case, suppose that parameters a and b are independent. In other words, a has no influence 
whatsoever on b, and vice-versa.  

 A contour plot (also called an isocontour plot) of X as a function of a 
and b is sketched to the right. 

 The ellipses represent contours of constant X (iso-X contours), 
increasing in value towards the center, and the red dot in the middle 
represents the maximum X value – the optimum value, which is 
desired. The goal of the experiment is to find the values of a and b 
(labeled a1 and b1 in the diagram) that yield the maximum (optimum) 
value of X.  

 Note: In an actual experiment, such a contour plot will not be 
available (although it can be constructed if desired). It is used here for illustrative purposes only.  

 The most simple-minded approach is called “one parameter at a time”. As the name implies, this technique 
involves fixing all parameters except one, and varying the remaining parameter as follows:  
o Some value of b is chosen randomly. In the diagram, this value is b0.  
o Several experiments are run, measuring X with b fixed at the value b0, while varying the value of a. This 

is illustrated by the horizontal blue dashed line.  
o The maximum value of X is found at a = a1, as indicated by the blue dot.  
o Next, a is kept fixed at a1, and b is varied, as represented by the vertical blue dashed line.  
o The maximum value of X is found at b = b1, as indicated by the red dot.  
o It turns out that since a and b are independent of each other, the true optimum point is at a = a1 and b = 

b1, i.e., at point (a1, b1), and no further testing is required.  
o The experiment is a success  the maximum value of X has been found.  

 Now suppose instead that parameters a and b are related to each other in some way. For example, if a is 
temperature and b is pressure, it is quite likely that as a increases, b also increases.  

 The contour plot of X(a, b) will not look the same as the above 
because of the interdependence of a and b. In fact, the contours of 
constant X may be tilted as sketched to the right. 

 Suppose we employ the simple-minded (one parameter at a time) 
experimental approach again:  
o Some value of b (b = b0) is chosen randomly.  
o Several experiments are run, measuring X while keeping b at 

b0, but varying the value of a. This is illustrated by the 
horizontal blue dashed line.  

o The maximum value of X from these experimental runs is 
found at a = a1, as indicated by the blue dot.  

o Next, a is kept fixed at a1, and b is varied, as represented by the vertical blue dashed line.  
o The maximum value of X from these runs is found at b = b1, as indicated by the green dot.  
o Unfortunately, since a and b are dependent on each other, the true optimum point is not at point (a1, b1)!  
o The experiment is a failure - the maximum value of X has not been found.  

 Of course, we could continue with further experiments to “zero in” on the optimum.  
 For example, b can now be kept fixed at b1, and parameter a can be 

varied to find the maximum X, as illustrated in the sketch by the 
horizontal green dashed line and the orange dot at (a2, b1): 

 This has gotten closer to the true optimum point, but it can take 
numerous experiments to find the optimum this way.  

 The problem gets much worse when there are several parameters to 
be varied, i.e., a, b, c, d, ...  

 Thus, the goal is to devise a test matrix that “hunts” for the 
optimal point most efficiently (i.e., with the fewest number of 
experimental runs).  

 Genichi Taguchi is famous for devising intelligent test matrices for this very purpose. His technique is now 
called the Taguchi technique or the robust design method. The basics of this technique are described in this 
learning module. 
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Taguchi’s designed experiments 
 Taguchi realized that experiments in which only one parameter at a time is varied are inefficient, particularly 

when interaction exists between parameters.  
 He developed methodologies whereby all parameters are varied simultaneously to reduce the required 

number of experimental runs.  
 These methodologies are called designed experiments.  
 Some of the terminology and an illustrative example are provided below.  
 Full factorial analysis 

o Let P equal the number of parameters.  
o Let L equal the number of levels to be tested for each parameter.  
o A full factorial experiment is one in which each of the P parameters is varied to L different levels, while 

holding all the other parameters constant (one parameter at a time).  
o Let N represent the total number of experimental runs. It turns out that N can be easily calculated from 

L and P, i.e., PN L  for a full factorial experiment. 
o For example, in the simple experiment above, where X = X(a, b), there are two parameters, a and b (P = 

2). Suppose that four levels of each parameter are to be tested (L = 4). Specifically, there are four levels 
of parameter a (a1, a2, a3, and a4), and four levels of parameter b (b1, b2, b3, and b4).  

o The number of required runs for a full factorial experiment with P = 2 and L = 4 is 24 16PN L   .  
o As another example, consider X = X(a, b, c), and only two 

levels of each parameter are to be tested. Here, L = 2 and P 
= 3, thus a full factorial experiment requires 

32 8PN L    runs. 
o For this latter example, the 8 experimental runs are 

illustrated graphically as points on a 3-D plot. Note that 
here, for simplicity, the lowest level of a, b, and c (a1, b1, 
and c1, respectively) are assumed to be zero so that the box 
can be drawn with one corner on the origin as sketched. In 
a real experiment, it is not necessary that the lowest level 
of any of the parameters be zero. 

o Notice that for each parameter, two levels of that parameter 
are tested while holding each of the other two parameters 
constant.  

o For example, consider the two red points on the plot. Parameter a is varied from a1 to a2 while b and c 
are fixed at b1 and c1 respectively.  

o Each point (6 blue ones and 2 red ones) represents an experimental run; a total of eight runs are required 
for two levels and three parameters. This is a full factorial experiment.  

 Fractional factorial analysis 
o Taguchi showed that it is not necessary to run full factorial experiments, as long as the experimental runs 

are chosen appropriately and intelligently. 
o A fractional factorial experiment is defined as one in which we run only a fraction of the number of 

runs necessary for a full factorial experiment.  
o Specifically, we construct an experimental test matrix in 

which there are still L levels for each parameter, and there 
are still P parameters, but some of the data points in the full 
factorial experiment are “skipped”.  

o For the above example in which X = X(a, b, c) and two 
levels of each parameter are tested (P = 3 and L = 2), we 
can cut the number of runs in half, while still meeting the 
criterion of two levels for each parameter!  

o One such fractional factorial experiment is illustrated here 
on the 3-D plot to the right. 

o In this example, there are only 4 required runs (illustrated 
by the four red dots); the number of runs for this fractional 
factorial experiment has been reduced by half.  

o Run numbers 1 through 4 are labeled on the sketch for convenience. The result of the experimental run at 
each of these run numbers is designated by X1, X2, X3, and X4 respectively.  
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o Notice: There are still two levels tested for parameter a (points 1 and 2 at a1, the lower level of a, and 
points 3 and 4 at a2, the higher level of a).  

o Similarly, there are still two levels tested for parameter b and for parameter c.  
o In such an experiment, some averaging needs to be done in 

order to find the effect of one of the parameters on X.  
o For example, to find the effect of parameter a on X, the 

average of X at level 1 of parameter a is compared to the 
average of X at level 2 of parameter a.  

o The level average for level 1 of parameter a is defined as 
the average over all runs where a is at level 1, (a = a1). 

Here, the level average is  1 1 2 / 2aX X X  . 

o Similarly, the level average for level 2 of parameter a (a = 

a2) is  2 3 4 / 2aX X X  . This is illustrated graphically by 

the blue square symbols in the sketch to the right. 
o Notice: When studying the effect of parameter a on X, both 

high and low values of b, and both high and low values of c 
are incorporated into the averages.  

o The dashed green line shows that these two level averages indicate how X varies with parameter a alone. 
o This averaging effect also helps to smooth out errors due to 

random noise.  
o Let’s do a similar analysis to find the effect of parameter b 

on X: The level average for level 1 of parameter b is 
defined as the average over all runs where b is at level 1, 

(b = b1). Here, the level average is  1 1 3 / 2bX X X  . 

Similarly, the level average for level 2 of parameter b (b = 

b2) is  2 2 4 / 2bX X X  . This is illustrated graphically by 

the blue square symbols in the sketch to the right. 
o You can draw similar level averages for parameter c on the 

above sketch.  
o Fractional factorial methods become even more useful as P 

(the number of parameters) increases, because the number of required experimental runs can be 
reduced significantly.  

 

Taguchi design arrays 
 Taguchi also developed tables called design arrays or test matrices to aid in experimental design. These 

arrays can be used for both full factorial and fractional factorial analyses. 
 An optimum Taguchi design array for a fractional factorial analysis adheres to the following two rules: 

o Each level of each parameter appears the same number of times in the array. 
o Repetitions of parameter-level combinations are minimized as much as possible. 

 

 Example: First we look at a very simple example. 
Given: X = X(a, b, c) and two levels of each parameter are to be tested (P = 3 and 

L = 2). This is the same example illustrated graphically above.  
To do: Develop a full factorial design array and a fractional factorial Taguchi 

design array, and compare. 
Solution: 
o We construct a table with 5 columns, one for the run number, one for each of 

the three variables a, b, and c, and one for the result X.  
o For a full factorial test, we require 8 runs, with both levels of each parameter 

tested 4 times. The design array or test matrix is shown to the right. 
o In the table, the numbers below a, b, and c represent the level of parameter a, 

b, or c, respectively. For example, the 2 in run 4, column b indicates level 2 
of parameter b, i.e., b2.  
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o For the fractional factorial test discussed above, only four runs are required, as illustrated by the red 
dots in the above 3-D sketches (both levels of each parameter tested twice). 

o We carefully construct the Taguchi array so that the run number corresponds 
to the circled number labeled on the red dots in the 3-D sketches above. 
Using these sketches as a guide, we construct the fractional factorial 
(Taguchi) array or test matrix shown to the right. 

o The experiments are run in order by run number, and the result is shown in 
the final column. For example, run number 4 uses level 2 of parameter a (a = 
a2), level 2 of parameter b (b = b2), and level 1 of parameter c (c = c1). The 
experimental result for this run is called X4. 

Discussion: Comparing the two arrays, we see that the Taguchi fractional factorial array requires only half of 
the number of runs, yet still tests two levels of each of the three parameters. 

 

 We check whether our Taguchi design array is optimum – does it satisfy the two rules given above? 
o Does each level of each parameter appear the same number of times in the array? Yes. For example, 

level 1 of parameter a appears twice, in runs 1 and 2. Level 2 of parameter c also appears twice, in runs 2 
and 3, etc. This is true for any of Taguchi’s design arrays. 

o Are repetitions of parameter-level combinations minimized as much as possible? Yes. For example, 
when parameter a is at level 1 (runs 1 and 2), parameter b is at level 1 in run 1 and at level 2 in run 2; 
there is no situation in which there are two runs with both a at level 1 and b at level 1. You can verify 
that this is the case for any combination of parameters. 

 Since both rules are met, this is indeed an optimum Taguchi design array for a fractional factorial analysis. 
 Note: In Taguchi design arrays, three levels is more useful than two levels, so that trends and maxima or 

minima can be discerned, as discussed later. First, an example with three levels of each parameter. 
 

 Example: Now we look at a more complicated example. 
Given: X = X(a, b, c, d) – four parameters, and three levels of each 

parameter are to be tested (P = 4 and L = 3).  
To do: Calculate how many runs would be required for a full factorial 

experiment. Generate a Taguchi array that still tests three levels of each 
parameter, but with fewer runs; compare the number of required runs. 

Solution: 
o A full factorial experiment would require N = LP = 34 = 81 runs.  
o A well-designed fractional factorial experiment can be created that 

requires only 9 runs, while still testing three levels of each of the four 
parameters. We choose to test each level three times: (3  3 = 9 runs). 

o The Taguchi design array for this case is shown to the right.  
o We check whether our Taguchi design array satisfies the two rules given 

above: 
 Does each level of each parameter appear the same number of times 

in the array? Yes. For example, level 2 of parameter b appears three times, in runs 2, 5, and 8. Level 
3 of parameter c appears three times, in runs 3, 5, and 7. Level 1 of parameter d appears three times, 
in runs 1, 5, and 9. This rule is satisfied for each level of each parameter. 

 Are repetitions of parameter-level combinations minimized as much as possible? Yes. For example, 
when parameter a is at level 2 (runs 4, 5, and 6), parameter b is at levels 1, 2, and 3, respectively (no 
repeats), parameter c is at levels 2, 3, and 1, respectively (no repeats), and parameter d is at levels 3, 
1, and 2, respectively (no repeats). Similarly, when parameter d is at level 3 (runs 3, 4, and 8), 
parameter c is at levels 3, 2, and 1, respectively (no repeats), etc. You are welcome test other 
possible combinations – you will find no situation in which there are two runs with repeated levels of 
any two parameters. This is an optimum Taguchi design array. 

o The second rule is important because the level averages contain values over the entire range of each 
parameter, and are not falsely “weighted” at any particular level of any parameter. (Level averages are 
discussed in detail below.) 

Discussion: The Taguchi fractional factorial design array allows us to design the experiment with only 9 
runs instead of 81 runs – a great improvement! This is significant because the cost and/or time required 
to run the experiment are reduced by nearly an order of magnitude. 
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 Shown to the right is an improper Taguchi design array for the same fractional 
factorial analysis as in the above example (P = 4 and L = 3), formed by 
interchanging two values in column d, rows 7 & 8. At first glance, it looks 
okay. But why is it improper? Let’s look at the rules again: 
o Does each level of each parameter appear the same number of times in 

the array? Yes. The first rule is satisfied. 
o Are repetitions of parameter-level combinations minimized as much as 

possible? No. The second rule is violated. For example, when parameter c 
is at level 1 (runs 1, 6, and 8), parameter d is at levels 1, 2, and 2, 
respectively – level 2 of parameter d is repeated when parameter c is at 
level 1. This problem is highlighted. Can you spot any other problems 
with this array? 

 
Using level averages to predict the optimum (maximum) X 

 In order to determine the effect of a parameter on X, we calculate and plot the 
level averages, defined as the average value of X at each level of the parameter.  

 For example, in the proper Taguchi array above for the case with P = 4 and L = 3, we define the level 
average for level 1 of parameter a as the average over all runs where a is at level 1 (a = a1). Using the 
Taguchi array as our guide, we see that this level average is equal to  1 1 2 3 / 3aX X X X   . 

 Similarly, we define all 12 level averages (3 levels for each of the 4 parameters):  

 1 1 2 3 / 3aX X X X      2 4 5 6 / 3aX X X X      3 7 8 9 / 3aX X X X    

 1 1 4 7 / 3bX X X X      2 2 5 8 / 3bX X X X      3 3 6 9 / 3bX X X X    

 1 1 6 8 / 3cX X X X      2 2 4 9 / 3cX X X X      3 3 5 7 / 3cX X X X    

 1 1 5 9 / 3dX X X X      2 2 6 7 / 3dX X X X      3 3 4 8 / 3dX X X X    

 Plots of the level averages show the effect of each parameter on result X.  
 For example, to determine the effect of parameter a on X, we create a 

plot of aX  as a function of parameter a. Specifically, we plot level 

averages 1aX , 2aX , and 3aX  at their corresponding values of a1, a2, a3, 
respectively, as shown in the sketch to the right. 

 The red line is a trend line. Note that there is some scatter in the data 
points, and the trend line does not necessarily go through each point 
exactly.  

 Similarly, the effects of parameters b, c, and d, along with their trends 
are seen in the following plots: 
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 With three levels, there are five possible outcomes:  

o No effect (no significant trend – a nearly horizontal line), as in the plot of bX  above.  

o Increasing (trend upward), as in the plot of aX  above.  

o Decreasing (trend downward), as in the plot of dX  above.  
o Maximum (up and then down, with maximum in between), as in the 

plot of cX above.  
o Minimum (down and then up, with minimum in between), as sketched 

to the right for a fake parameter e. [We have only 4 parameters in our 
example, so we cannot illustrate all five possible outcomes; therefore, 
we introduce a fifth parameter e for illustrative purposes only.] 
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 If the levels tested in this experiment are the only available levels, the experiment would be complete. 
 Since our goal from the outset is to maximize X, we choose the level of each parameter that yields the 

maximum X. In this case, we choose to run the experiment at a = a3, c = c2, and d = d1, so as to maximize X.  
 Since parameter b has no significant effect on X, parameter b can be selected strictly on the basis of cost.  
 In this particular example, the combination of parameters predicted to yield the maximum value of X turns 

out to be one of the experimental test runs, namely run number 9 in which a = a3, c = c2, and d = d1. We are 
not always this fortunate! 

 In many cases, the optimum case is predicted to be a particular combination of parameters that is not 
represented by any of the test runs. For such cases, a confirmation experiment may be necessary.  

 In addition, if levels other than the ones tested are feasible, and funding is available, the engineer may choose 
to do some follow-up experiments. 

 

Confirmation experiment and follow-up experiments  
 In many cases, as discussed above, the exact combination of levels determined to be optimum may not have 

been one of the original test runs in the experimental design array. In such a case, it is prudent to perform at 
least one more test, with each parameter set at its optimum level, to see if the result is indeed an optimized 
result. Such a test is called a confirmation experiment.  

 Suppose, for example, that the results of the above sample experiment turned out such that levels a3, b1, c2, 
and d1 were found to be optimum. Unfortunately, the original experimental design array does not contain a 
test with this exact combination of the four levels. Hence, the confirmation experiment would involve testing 
at levels a3, b1, c2, and d1. If the Taguchi technique works properly, the maximum value of X should be 
achieved for this combination of parameters. 

 We may also wish to design follow-up experiments to “zero in” on the optimum output, i.e., to determine the 
optimum value of X more precisely.  

 For example, in the above sample experiment, follow-up experiments are based on the results of the first nine 
experimental runs:  
o Parameter b has negligible effect on X. It does not need to be included in the follow-up tests at all.  
o Parameter a should be tested at higher values, if feasible, since we found that X increases with a.  
o Parameter d should be tested at lower values, if feasible, since we found that X decreases with d.  
o Parameter c should be varied in smaller increments around level c2 in order to “zero in” on the true 

maximum value of X. 
 The follow-up experiments in this example are simpler to set up and less costly 

because there are now only three parameters to be varied – a, c, and d (P = 3 
instead of 4), since b has negligible effect on the value of X. 

 One possible Taguchi design array for the follow-up experiments is shown in the 
table to the right for three levels for each of three parameters a, c, and d (P = 3 
and L = 3), with each level tested twice for each parameter: (3  2 = 6 runs). 

 Notice that only 6 experimental runs are needed for this fractional factorial 
experiment, compared to N = LP = 33 = 27 runs for a full factorial experiment. 

 Another possible Taguchi design array is shown to the lower right for this same 
example. Here, we choose to test each level of each parameter three times instead 
of two times, requiring 9 runs: (3 levels  3 times for each level = 9 runs). 

 Let’s compare the two arrays (6 runs vs. 9 runs): 
o This larger array is “better” than the smaller array because it includes more 

combinations of levels and parameters, and the level averages are therefore 
more accurate and more meaningful. 

o Of course, this larger array requires a more expensive and time-consuming 
test. 

 As with most engineering problems, there are tradeoffs between cost and quality. 
 

Final comments  
 There are other design arrays (other than Taguchi arrays) in use by engineers.  

o For example, the latin square test matrix is a popular design array.  
 For a case with 3 parameters (P = 3) and 5 levels each (L = 5), a full 

factorial test would require N = LP = 53 = 125 experimental runs.  
 The latin square test matrix requires only 25 runs for P = 3 and L = 5, 

which represents a reduction in the number of runs by a factor of 5. 
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 The analyses presented here are simplified. More sophisticated analyses are available, beyond the scope of 
this course. They include, for example:  
o Separate treatment of controllable factors and uncontrollable (noise) factors. In this learning module, we 

consider only controllable factors. 
o inner arrays and outer arrays for testing of controllable and uncontrollable factors, respectively. Here, 

we consider only inner arrays. 
o Calculation of signal-to-noise ratios (SNRs) to provide quantitative analysis of the quality of the results.  
o Examination of interactions between controllable parameters and uncontrollable (noise) parameters. 

(These are called two-factor interactions.)  
 Nevertheless, although simple, the fractional factorial test matrices presented here are particularly useful for 

the initial design of an experiment, and you are encouraged to use them wherever possible. 
 Taguchi also designed what are called orthogonal test matrices or Taguchi orthogonal arrays. These are 

discussed in more detail in the next learning module. 


