
A Brief Analysis of Guitar String Harmonics, Partials, and Timbre

Using Matlab FEA, FFT & ME345

Aleksey Ryzhakov

4/16/10

For this brief analysis, a Fall09 ME370 Guitar String project was used. The premise of the

project was to use rudimentary Finite Element Analysis to simulate the response of a guitar

string after it has been plucked. The string response was then scanned at a specific point on the

string—presumably, the location would approximate the location of an electric guitar pickup

that scans the string and produces sound. With ME345 skills, the string vibration can be more

closely observed.

The Matlab code is attached at the end of this paper. Note: some of the code was provided by

Dr. Eric Marsh. His portion of the code has been identified in the comments. Change the

number of elements, n, for faster code processing (at the expense of accuracy).

Results

Fig 1.0

5 10 15 20 25
-5

-4

-3

-2

-1

0

1

2

3

4

5
x 10

-3

Position On String

H
e
ig

h
t

Side view of the entire string

String at t=0.001s

String at t=0+ s

String at t=0s (Initial)

Reference

Figure 1.0: A visual representation of how the string changes with time. At t=0, it is being

plucked, at t=0+ it is starting to oscillate.

Fig 1.1

Figure 1.1: String output as measured by observing the deflection of the string at 6.6 in from

the left. This is the focus of the FFT analysis.

Blue – Natural string output

Red – Simple guitar distortion effect added (exponentially decaying clipping, decays with the

string oscillation amplitude decay). This produces a very rough approximation of how a

distorted guitar sounds.

It is critical to note that while an electric guitar pickup observes only one portion of the string,

an acoustic guitar vibrates the air with its entire length, and it’s time plot would thus be

different. More importantly, an acoustic guitar also contains a resonating chamber that further

affects the time plot.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
-3

-2

-1

0

1

2

3

4

5
x 10

-3

Time (sec) - this is the vecotor that the computer would play to generate sound

S
tr

in
g
 O

s
c
ill

a
ti
o
n
 P

o
s
it
io

n
 (

in
)

Scanning Location Output (Electric Guitar Pickup)

Original

Distorted

FFT Analysis: is the simulation correct?

The string FEA initial conditions are made specifically such that the output note is E4 – 329.6 Hz

Tension force T = 72.5239 lbs

Length of the String L = 0.6477 in

Linear Density rho = 0.0004 lbs/in^2

Using the general equation for frequency of a string

F_theoretical = (1/2L)sqrt(T/rho) = 329.6 Hz = E4

This confirms that the string being simulated should be playing the E4 note. We expect the

Finite Element Analysis to return a string that oscillates at 329.6Hz, and an FFT output to

contain the biggest response at around that frequency.

FFT analysis was conducted on the string scanning location output vector (fig 1.1 – note, the

graph has axis limits, the actual response is measured for one second)

Sample Frequency was 44100 Hz, and the sampling time was 1 s.

The FFT output is located on the next page (figure 2.0 and figure 2.1).

Figure 2.0

Figure 2.1 – zooming in on higher harmonics

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5
x 10

-3

X: 330.8

Y: 0.002482

frequency, f (Hz) - only up to 7000 Hz, but f fold is fsamp/2

|F
|

Harmonics of a Guitar String

X: 661.5

Y: 0.001537

X: 992.3

Y: 0.0005902

X: 1323

Y: 2.629e-005

X: 1654

Y: 9.772e-005

Original

1500 2000 2500 3000 3500 4000 4500
-2

0

2

4

6

8

10

x 10
-5

X: 1985

Y: 8.762e-006

frequency, f (Hz) - only up to 7000 Hz, but f fold is fsamp/2

|F
|

Harmonics of a Guitar String

X: 2315

Y: 4.651e-005

X: 1654

Y: 9.772e-005

X: 2977

Y: 4.297e-005

X: 2646

Y: 1.177e-005

X: 3308

Y: 5.049e-005

X: 3638

Y: 1.774e-005

Original

The largest frequency is 330.8 Hz, which is in line with our expectation of 329.6 Hz. The

simulation is out of tune only by 1.2 hz. According to the calculator found on the website

http://www.sengpielaudio.com/calculator-centsratio.htm, this corresponds to being out of

tune by about 6 cents – a small amount.

The main concern, however, is how accurate is this simulation at higher harmonics?

Expected harmonic frequency = Harmonic # * fundamental frequency

Harmonic
Cent

Offset Expected Frequency (Hz) FFT Output (Hz) % Error

2 1200 659.2 661.5 0.348908

3 1902 988.8 992.3 0.353964

4 2400 1318.4 1323 0.348908

5 2786 1648 1654 0.364078

6 3368 1977.6 1985 0.374191

7 3600 2307.2 2315 0.338072

8 3803.9 2636.8 2646 0.348908

9 3986.3 2966.4 2977 0.357335

10 4151.3 3296 3308 0.364078

11 4302 3625.6 3638 0.342012

Figure 3.0

The table concludes that the model is very accurate. Curiously, the 3rd harmonic had an

extremely low amplitude (but it is there)—that may have been due to the limited leakage.

As seen from our FFT, the simulated guitar string had all the harmonics (multipliers of

fundamental frequency), but no partials (peaks in between the harmonics). This may be due to

the fact that our simulation is perfect – in other words, the original output has no electronic

post processing or, in the case of an acoustic guitar, vibration effects that would be found

between the acoustic guitar and its wooden elements.

http://www.sengpielaudio.com/calculator-centsratio.htm

Let’s analyze the FFT with a simple post-processing effect: simple distortion (red line in Fig 1.1).

According to Wikipedia, the definition of an instrument timbre is its unique harmonic amplitude

spectrum, and possibly the addition of partials. The timbre is what makes a guitar sound

different than, for instance, a piano. This will test that definition.

Figure 4.0

The distortion effect dampens the first three harmonics, but drastically amplifies harmonics 4, 5,

6. No partials are added. If played through MatLab, the distortion can be clearly heard, and

thus the FFT plot confirms the definition of timbre—even with this same harmonic layout, the

change in relative amplitudes affects the sound that is produced by the guitar.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1

1.5

2

2.5
x 10

-3

X: 992.3

Y: 0.0005902

frequency, f (Hz) - only up to 7000 Hz, but f fold is fsamp/2

|F
|

Harmonics of a Guitar String

Original

Distorted

%% Guitar String Analysis
% Guitar String Appearance and Output

clc
clear all

% Number of elements in the FEA analysis of the string
n = 400;

% Define time vector (lasts Tmax seconds)
fsamp = 44100;
Tmax = 1;
t = (0: 1/fsamp: Tmax);

% Define string properties to be used in the FEA analysis.

T = 16.2975 * 4.45; % tension
L = 25.5 * 0.0254; % length of standard 25.5" ax
rho = 7850*pi*(0.010*0.0254)^2/4; % density per length of 0.010" string

% To prove the FFT correct, use the approximation formula to calculate the
% theoretical frequency output. Based on the above properties, if
% unchanged, f_theory will be 329.6 Hz, or E4
f_theory = sqrt(T/rho)*(1/(2*L));
disp(f_theory)

% ***** Finite Element Analysis of the Guitar String!*****
% ***** Program for Initial values created by Dr. Marsh***
%***
% Element mass and stiffness matrices
k = T*n/L*[1 -1; -1 1];
m = rho*L/n*[3 0; 0 3]/6;

% Assemble global mass and stiffness matrices
K = zeros(n+1);
M = zeros(n+1);
for inc = 1: n,
 K(inc:inc+1,inc:inc+1) = K(inc:inc+1,inc:inc+1) + k;
 M(inc:inc+1,inc:inc+1) = M(inc:inc+1,inc:inc+1) + m;
end
clear T rho k m inc

% Rayleigh damping model (alpha = 5, beta = 0.00000002)
% String Damping
C = 5*M + 2e-8*K;

% Apply boundary conditions (ME 461 material)
K(1,1) = 50*K(1,1);
K(end,end) = 50*K(end,end);

% Solve eigenvalue problem

[X, omega_squared] = eig(K, M);
omega_n = sqrt(diag(omega_squared));

% Reorder from lowest to highest
[omega_n, i] = sort(omega_n);
X = X(:,i);

% Decouple matrices
mi = diag(X'*M*X);
ci = diag(X'*C*X);
ki = diag(X'*K*X);

clear M C K

% Underdamped system properties
zeta = ci./sqrt(ki.*mi)/2;
omega_d = omega_n .* sqrt(1 - zeta.^2);

%%
%***END OF Dr. Marsh material;**
%*******************************

% 4. Initial conditions from spatial to modal coords
x0 = zeros(length(X), 1);
v0 = zeros(length(X), 1);
m = .005; % pluck amount

f = 6;
input = L/f; %Location from the left where the string will be plucked (1/6 is
%a good approximation for where a guitar is plucked)

loc = round(input/(L/n)); %identifies the mass element that is being plucked
z=0; %distance vector

% Populate the initial condition matricies with the initial deflection
for inc = 1:loc
 z = z+L/((loc)*f);
 x0(inc, 1) = m*f/L*z;
end
intval = x0(loc, 1);
clear inc
for inc = (loc+1):(n)
 z = z+L/((loc)*f);
 x0(inc, 1) =intval -m*f/(L*f-L)*(z-L/f);
end

eta0 = X\x0;
etad0 = X\v0;

scan_loc = round(n/(f-2)); %the location where you wish to scan the

rest_pos = [0 0]; %ignore - this is to plot the string rest position

values = [0 25.5]; %

% Conduct a differential equations approach to find a solution to the
% matrix of simultanous equations

W = eta0; %Constants, Solution
V = (etad0 + zeta.*omega_n.*W)/omega_d; %Constants, Solution

 %Homogenious Solution

 eta_h = zeros((length(X)),(length(t)));
 for inc = 1: length(W),
 eta_h(inc,:) = W(inc)*(exp(-

zeta(inc)*omega_n(inc)*t).*cos(omega_d(inc)*t)) + ...
 V(inc)*(exp(-zeta(inc)*omega_n(inc)*t).*sin(omega_d(inc)*t));
end

x = X*(eta_h);
clear eta X M C K mi ci ki

% Plot the response
figure(1)
for z = 1:2:49
 inc=50-z;
 color=[4*inc/200 4*inc/200 (0.5+2*inc/200)];
 if inc==1
 plot(25.5*[0:5:(n-1)]/n, x(1:5:n, 1),'g','LineWidth',4)
 else
 plot(25.5*[0:5:(n-1)]/n, x(1:5:n, inc),'Color',color,'LineWidth',4)
 end
 axis([1 25.5 -.005 .005])
 hold on
end
plot(values, rest_pos, 'k--')

xlabel('Position On String')
ylabel('Height')
title('Side view of the entire string')
clear x0 v0
hold off

figure(2)
plot(t,x(scan_loc,:),'b','LineWidth',2)
hold on
axis([0 .01 -.003 .005])
xlabel('Time (sec) - this is the vecotor that the computer would play to

generate sound')
ylabel('String Oscillation Position (in)')
title('Scanning Location Output (Electric Guitar Pickup)')

%% ADAPTED FFT ANALYSIS CODE
% Adapted from S10 ME345 course

N = 800;

f_s = fsamp; % 44100 Hz

f = x(scan_loc,1:length(t)); % signal data

%Calculated values:

T = N/f_s; % Total sample time (s)
del_t = 1/f_s;
del_f = 1/T;
f_fold = f_s/2; % Folding frequency = max frequency of FFT
N_freq = N/2; % Number of discrete frequencies

% FFT of the time signal

for k = 0:N/2
 frequency(k+1) = k*del_f;
end

%NFFT = 2^nextpow2(N); % Use power of 2 for FFT (NOT necessary in Matlab, but

faster)
%F = fft(f,NFFT); % Compute FFT for case with integer multiple of 2 data

points
F = fft(f,N); % Compute FFT for general case: N not necessarily a

multiple of 2

for k =0:N/2
 Magnitude(k+1) = abs(F(k+1))/(N/2);
end
Magnitude(1) = Magnitude(1)/2; % Divide first term by a factor of 2
% Plot the frequency spectrum

figure(5)
% plot(frequency,Magnitude,'-

bo','MarkerFaceColor','r','MarkerEdgeColor','r','LineWidth',2)
plot(frequency,Magnitude,'LineWidth',2)
% title('FFT Frequency Spectrum','FontWeight','Bold','FontSize',16)
xlabel('frequency, f (Hz) - only up to 7000 Hz, but f fold is

fsamp/2','FontWeight','Bold')
ylabel('|F|','FontWeight','Bold')
title('Harmonics of a Guitar String')
xmin = 0;
xmax = 12000;
xlim([xmin xmax])
grid
hold on;
%% Distort

 dist = .003*exp(-zeta(10)*omega_n(10)*t).*(ones(1, length(x)));
 dist2 = -.001*exp(-zeta(10)*omega_n(10)*t).*(ones(1, length(x)));
 for con = 1:length(x)
 if x(scan_loc,con) > dist(1,con)
 x(scan_loc,con) = dist(1,con) ;

 elseif x(scan_loc,con) < dist2(1,con)
 x(scan_loc,con) = dist2(1,con);

 else
 x(scan_loc,con) = x(scan_loc,con);
 end
 end

N = 800;
f_s = fsamp; % 44100 Hz

f = x(scan_loc,1:length(t)); % signal data

%Calculated values:

T = N/f_s; % Total sample time (s)
del_t = 1/f_s;
del_f = 1/T;
f_fold = f_s/2; % Folding frequency = max frequency of FFT
N_freq = N/2; % Number of discrete frequencies

% FFT of the time signal

for k = 0:N/2
 frequency2(k+1) = k*del_f;
end

%NFFT = 2^nextpow2(N); % Use power of 2 for FFT (NOT necessary in Matlab, but

faster)
%F = fft(f,NFFT); % Compute FFT for case with integer multiple of 2 data

points
F = fft(f,N); % Compute FFT for general case: N not necessarily a

multiple of 2

for k =0:N/2
 Magnitude2(k+1) = abs(F(k+1))/(N/2);
end
Magnitude2(1) = Magnitude2(1)/2; % Divide first term by a factor of 2
% Plot the frequency spectrum

figure(5)
% plot(frequency,Magnitude,'-

bo','MarkerFaceColor','r','MarkerEdgeColor','r','LineWidth',2)
plot(frequency2,Magnitude2,'r','LineWidth',2)
% title('FFT Frequency Spectrum','FontWeight','Bold','FontSize',16)
xlabel('frequency, f (Hz) - only up to 7000 Hz, but f fold is

fsamp/2','FontWeight','Bold')
ylabel('|F|','FontWeight','Bold')
title('Harmonics of a Guitar String')
xmin = 0;
xmax = 12000;
xlim([xmin xmax])
grid
hold off;
legend('Original', 'Distorted')

figure(2)
plot(t,x(scan_loc,:),'r','LineWidth',2)

legend('Original','Distorted')
hold off

