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For this brief analysis, a Fall09 ME370 Guitar String project was used.  The premise of the 

project was to use rudimentary Finite Element Analysis to simulate the response of a guitar 

string after it has been plucked.  The string response was then scanned at a specific point on the 

string—presumably, the location would approximate the location of an electric guitar pickup 

that scans the string and produces sound.  With ME345 skills, the string vibration can be more 

closely observed.  

 

The Matlab code is attached at the end of this paper.  Note: some of the code was provided by 

Dr. Eric Marsh.  His portion of the code has been identified in the comments.  Change the 

number of elements, n, for faster code processing (at the expense of accuracy). 

 

Results 

 
Fig 1.0 
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Figure 1.0: A visual representation of how the string changes with time. At t=0, it is being 

plucked, at t=0+ it is starting to oscillate. 

 

 
Fig 1.1 

Figure 1.1: String output as measured by observing the deflection of the string at 6.6 in from 

the left.  This is the focus of the FFT analysis. 

 

Blue – Natural string output 

Red – Simple guitar distortion effect added (exponentially decaying clipping, decays with the 

string oscillation amplitude decay).  This produces a very rough approximation of how a 

distorted guitar sounds. 

 

It is critical to note that while an electric guitar pickup observes only one portion of the string, 

an acoustic guitar vibrates the air with its entire length, and it’s time plot would thus be 

different. More importantly, an acoustic guitar also contains a resonating chamber that further 

affects the time plot. 

 

 

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
-3

-2

-1

0

1

2

3

4

5
x 10

-3

Time (sec) - this is the vecotor that the computer would play to generate sound

S
tr

in
g
 O

s
c
ill

a
ti
o
n
 P

o
s
it
io

n
 (

in
)

Scanning Location Output (Electric Guitar Pickup)

 

 

Original

Distorted



 

 

 

FFT Analysis: is the simulation correct? 

 

The string FEA initial conditions are made specifically such that the output note is E4 – 329.6 Hz 

Tension force T = 72.5239   lbs 

Length of the String L = 0.6477   in 

Linear Density rho = 0.0004 lbs/in^2 

 

Using the general equation for frequency of a string 

 

F_theoretical  = (1/2L)sqrt(T/rho) =  329.6 Hz  = E4 

 

This confirms that the string being simulated should be playing the E4 note.  We expect the 

Finite Element Analysis to return a string that oscillates at 329.6Hz, and an FFT output to 

contain the biggest response at around that frequency.   

 

FFT analysis was conducted on the string scanning location output vector (fig 1.1 – note, the 

graph has axis limits, the actual response is measured for one second) 

 

Sample Frequency was 44100 Hz, and the sampling time was 1 s. 

 

The FFT output is located on the next page (figure 2.0 and figure 2.1). 

 



 
Figure 2.0 

 
Figure 2.1 – zooming in on higher harmonics 
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The largest frequency is 330.8 Hz, which is in line with our expectation of 329.6 Hz.  The 

simulation is out of tune only by 1.2 hz.  According to the calculator found on the website 

http://www.sengpielaudio.com/calculator-centsratio.htm, this corresponds to being out of 

tune by about 6 cents – a small amount. 

 

The main concern, however, is how accurate is this simulation at higher harmonics? 

 

Expected harmonic frequency = Harmonic  #  *  fundamental  frequency 

 

Harmonic 
Cent 

Offset Expected Frequency (Hz) FFT Output (Hz) % Error 

2 1200 659.2 661.5 0.348908 

3 1902 988.8 992.3 0.353964 

4 2400 1318.4 1323 0.348908 

5 2786 1648 1654 0.364078 

6 3368 1977.6 1985 0.374191 

7 3600 2307.2 2315 0.338072 

8 3803.9 2636.8 2646 0.348908 

9 3986.3 2966.4 2977 0.357335 

10 4151.3 3296 3308 0.364078 

11 4302 3625.6 3638 0.342012 

Figure 3.0 

 

The table concludes that the model is very accurate.  Curiously, the 3rd harmonic had an 

extremely low amplitude (but it is there)—that may have been due to the limited leakage. 

 

As seen from our FFT, the simulated guitar string had all the harmonics (multipliers of 

fundamental frequency), but no partials (peaks in between the harmonics). This may be due to 

the fact that our simulation is perfect – in other words, the original output has no electronic 

post processing or, in the case of an acoustic guitar, vibration effects that would be found 

between the acoustic guitar and its wooden elements. 

 

 

 

 

 

http://www.sengpielaudio.com/calculator-centsratio.htm


Let’s analyze the FFT with a simple post-processing effect: simple distortion (red line in Fig 1.1).  

According to Wikipedia, the definition of an instrument timbre is its unique harmonic amplitude 

spectrum, and possibly the addition of partials.  The timbre is what makes a guitar sound 

different than, for instance, a piano. This will test that definition. 

 

 
Figure 4.0 

 

The distortion effect dampens the first three harmonics, but drastically amplifies harmonics 4, 5, 

6.  No partials are added.  If played through MatLab, the distortion can be clearly heard, and 

thus the FFT plot confirms the definition of timbre—even with this same harmonic layout, the 

change in relative amplitudes affects the sound that is produced by the guitar. 
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%% Guitar String Analysis 
% Guitar String Appearance and Output 

  
clc 
clear all 

  
% Number of elements in the FEA analysis of the string 
n = 400; 

  
% Define time vector (lasts Tmax seconds) 
fsamp = 44100; 
Tmax = 1; 
t = (0: 1/fsamp: Tmax); 

  

  
% Define string properties to be used in the FEA analysis. 

  
T = 16.2975 * 4.45;                 % tension  
L = 25.5 * 0.0254;                  % length of standard 25.5" ax 
rho = 7850*pi*(0.010*0.0254)^2/4;   % density per length of 0.010" string 

  
% To prove the FFT correct, use the approximation formula to calculate the 
% theoretical frequency output.  Based on the above properties, if 
% unchanged, f_theory will be 329.6 Hz, or E4 
f_theory = sqrt(T/rho)*(1/(2*L)); 
disp(f_theory) 

  

  
% ***** Finite Element Analysis of the Guitar String!***** 
% ***** Program for Initial values created by Dr. Marsh*** 
%********************************************************* 
% Element mass and stiffness matrices 
k = T*n/L*[1 -1; -1 1]; 
m = rho*L/n*[3 0; 0 3]/6; 

  
% Assemble global mass and stiffness matrices 
K = zeros(n+1); 
M = zeros(n+1); 
for inc = 1: n, 
    K(inc:inc+1,inc:inc+1) = K(inc:inc+1,inc:inc+1) + k; 
    M(inc:inc+1,inc:inc+1) = M(inc:inc+1,inc:inc+1) + m; 
end 
clear T rho k m inc 

  

  
% Rayleigh damping model (alpha = 5, beta = 0.00000002) 
% String Damping 
C = 5*M + 2e-8*K; 

  
% Apply boundary conditions (ME 461 material) 
K(1,1) = 50*K(1,1); 
K(end,end) = 50*K(end,end); 

  
% Solve eigenvalue problem 



[X, omega_squared] = eig(K, M); 
omega_n = sqrt(diag(omega_squared)); 

  
% Reorder from lowest to highest 
[omega_n, i] = sort(omega_n); 
X = X(:,i); 

  
% Decouple matrices 
mi = diag(X'*M*X); 
ci = diag(X'*C*X); 
ki = diag(X'*K*X); 

  
clear M C K 

  
% Underdamped system properties 
zeta = ci./sqrt(ki.*mi)/2; 
omega_d = omega_n .* sqrt(1 - zeta.^2); 

  
%% 
%***END OF Dr. Marsh material;** 
%******************************* 

     
% 4. Initial conditions from spatial to modal coords 
x0 = zeros(length(X), 1); 
v0 = zeros(length(X), 1); 
m = .005; % pluck amount 

  

  
f = 6; 
input = L/f; %Location from the left where the string will be plucked (1/6 is 
%a good approximation for where a guitar is plucked) 

  
loc = round(input/(L/n)); %identifies the mass element that is being plucked 
z=0; %distance vector 

  
% Populate the initial condition matricies with the initial deflection 
for inc = 1:loc 
     z = z+L/((loc)*f); 
     x0(inc, 1) = m*f/L*z; 
end 
intval = x0(loc, 1); 
clear inc 
for inc = (loc+1):(n) 
     z = z+L/((loc)*f); 
     x0(inc, 1) =intval -m*f/(L*f-L)*(z-L/f); 
end 

  
eta0  = X\x0; 
etad0 = X\v0; 

  
scan_loc = round(n/(f-2)); %the location where you wish to scan the  

  

  
rest_pos = [ 0 0]; %ignore - this is to plot the string rest position 



values = [0 25.5]; % 

  

  
% Conduct a differential equations approach to find a solution to the 
% matrix of simultanous equations 

  
W = eta0;    %Constants, Solution 
V = (etad0 + zeta.*omega_n.*W)/omega_d;    %Constants, Solution 

  
 %Homogenious Solution 

  
 eta_h = zeros((length(X)),(length(t))); 
 for inc = 1: length(W), 
    eta_h(inc,:) = W(inc)*(exp(-

zeta(inc)*omega_n(inc)*t).*cos(omega_d(inc)*t)) + ... 
    V(inc)*(exp(-zeta(inc)*omega_n(inc)*t).*sin(omega_d(inc)*t)); 
end 

  
x = X*(eta_h); 
clear eta X M C K mi ci ki 

  
% Plot the response  
figure(1) 
for z = 1:2:49  
    inc=50-z; 
    color=[4*inc/200 4*inc/200 (0.5+2*inc/200)]; 
    if inc==1 
        plot(25.5*[0:5:(n-1)]/n, x(1:5:n, 1),'g','LineWidth',4) 
    else 
    plot(25.5*[0:5:(n-1)]/n, x(1:5:n, inc),'Color',color,'LineWidth',4) 
    end 
    axis([1 25.5 -.005 .005]) 
    hold on 
end 
plot(values, rest_pos, 'k--') 

  
xlabel('Position On String') 
ylabel('Height') 
title('Side view of the entire string') 
clear x0 v0 
hold off 

  
figure(2) 
plot(t,x(scan_loc,:),'b','LineWidth',2) 
hold on 
axis([0 .01 -.003 .005]) 
xlabel('Time (sec) - this is the vecotor that the computer would play to 

generate sound') 
ylabel('String Oscillation Position (in)') 
title('Scanning Location Output (Electric Guitar Pickup)') 

  
%% ADAPTED FFT ANALYSIS CODE 
% Adapted from S10 ME345 course 

  
N = 800; 



f_s = fsamp; % 44100 Hz 

  
f = x(scan_loc,1:length(t)); % signal data 

  
%Calculated values: 

  
T = N/f_s; % Total sample time (s) 
del_t = 1/f_s;  
del_f = 1/T; 
f_fold = f_s/2; % Folding frequency = max frequency of FFT 
N_freq = N/2; % Number of discrete frequencies 

  
% FFT of the time signal 

  
for k = 0:N/2 
    frequency(k+1) = k*del_f; 
end 

  
%NFFT = 2^nextpow2(N); % Use power of 2 for FFT (NOT necessary in Matlab, but 

faster) 
%F = fft(f,NFFT);   % Compute FFT for case with integer multiple of 2 data 

points 
F = fft(f,N);       % Compute FFT for general case: N not necessarily a 

multiple of 2 

  
for k =0:N/2 
    Magnitude(k+1) = abs(F(k+1))/(N/2); 
end 
Magnitude(1) = Magnitude(1)/2; % Divide first term by a factor of 2 
% Plot the frequency spectrum 

  
figure(5) 
% plot(frequency,Magnitude,'-

bo','MarkerFaceColor','r','MarkerEdgeColor','r','LineWidth',2) 
plot(frequency,Magnitude,'LineWidth',2) 
% title('FFT Frequency Spectrum','FontWeight','Bold','FontSize',16) 
xlabel('frequency, f (Hz) - only up to 7000 Hz, but f fold is 

fsamp/2','FontWeight','Bold') 
ylabel('|F|','FontWeight','Bold') 
title('Harmonics of a Guitar String') 
xmin = 0; 
xmax = 12000; 
xlim([xmin xmax]) 
grid 
hold on; 
%% Distort 

  
    dist = .003*exp(-zeta(10)*omega_n(10)*t).*(ones(1, length(x))); 
    dist2 = -.001*exp(-zeta(10)*omega_n(10)*t).*(ones(1, length(x))); 
    for con = 1:length(x) 
        if x(scan_loc,con) > dist(1,con) 
        x(scan_loc,con) = dist(1,con) ; 

  
        elseif x(scan_loc,con) < dist2(1,con) 
            x(scan_loc,con) = dist2(1,con); 



        else 
           x(scan_loc,con) = x(scan_loc,con); 
        end 
    end 

  
N = 800; 
f_s = fsamp; % 44100 Hz 

  
f = x(scan_loc,1:length(t)); % signal data 

  
%Calculated values: 

  
T = N/f_s; % Total sample time (s) 
del_t = 1/f_s;  
del_f = 1/T; 
f_fold = f_s/2; % Folding frequency = max frequency of FFT 
N_freq = N/2; % Number of discrete frequencies 

  
% FFT of the time signal 

  
for k = 0:N/2 
    frequency2(k+1) = k*del_f; 
end 

  
%NFFT = 2^nextpow2(N); % Use power of 2 for FFT (NOT necessary in Matlab, but 

faster) 
%F = fft(f,NFFT);   % Compute FFT for case with integer multiple of 2 data 

points 
F = fft(f,N);       % Compute FFT for general case: N not necessarily a 

multiple of 2 

  
for k =0:N/2 
    Magnitude2(k+1) = abs(F(k+1))/(N/2); 
end 
Magnitude2(1) = Magnitude2(1)/2; % Divide first term by a factor of 2 
% Plot the frequency spectrum 

  
figure(5) 
% plot(frequency,Magnitude,'-

bo','MarkerFaceColor','r','MarkerEdgeColor','r','LineWidth',2) 
plot(frequency2,Magnitude2,'r','LineWidth',2) 
% title('FFT Frequency Spectrum','FontWeight','Bold','FontSize',16) 
xlabel('frequency, f (Hz) - only up to 7000 Hz, but f fold is 

fsamp/2','FontWeight','Bold') 
ylabel('|F|','FontWeight','Bold') 
title('Harmonics of a Guitar String') 
xmin = 0; 
xmax = 12000; 
xlim([xmin xmax]) 
grid 
hold off; 
legend('Original', 'Distorted') 

  
figure(2) 
plot(t,x(scan_loc,:),'r','LineWidth',2) 



legend('Original','Distorted') 
hold off 

  


