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Introduction  

• Signals often contain noise and/or frequency components that we want to eliminate or suppress (attenuate). 
• In this learning module, we discuss filters – what they do, how they work, and how to build them. 
• Most of the filters discussed here are passive filters – they do not involve operational amplifiers and 

feedback loops, as do active filters, which are discussed briefly in a separate module. 
 
Types of filters  

• A filter is used to remove some unwanted frequency components in a voltage signal. 
• Consider a filter that modifies an input voltage signal Vin to produce an output 

voltage Vout, as sketched to the right.  
 Vin Filter Vout

• We define the gain G of the filter as the ratio of the magnitude of the output 
voltage to the magnitude of the input voltage, out inG V V= .  
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• The gain of a filter typically ranges from 0 to 1. 
• We categorize a filter according to its frequency response 

diagram – a plot of gain G vs. frequency f. 
• There are four basic types of filters:  

o A low-pass filter lets low frequencies go through or pass, 
but attenuates or cuts off high frequencies. The frequency 
response diagram for an ideal low-pass filter is sketched 
to the right. 

o The range of frequencies that is passed by the filter is called the pass band. Ideally, Vout/Vin = 1 in the 
pass band – the output voltage is not affected in any way by the filter. 

o The range of frequencies that is cut off or stopped by the filter is called the stop band. Ideally, Vout/Vin = 0 
in the stop band – the output voltage is completely cut off by the filter. 

o Real low-pass filters are not ideal, and do not cut off the high frequencies abruptly. Instead, there is a 
gradual roll off of the gain from 1 to 0. A typical frequency response diagram for a low-pass filter is 
sketched below left with linear scales for both gain and frequency. 
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o Logarithmic scales are usually used when plotting the frequency response diagram – on both the 

horizontal and vertical axes, as sketched above right. 
o A high-pass filter lets high frequencies go through or pass, but attenuates low frequencies, as sketched 

below left (with log-log scales). 
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o A band-pass filter is a combination of the above two. It 

lets a band of frequencies go through or pass, but 
attenuates both low frequencies and high frequencies, 
as sketched above right. 

o Finally, a band-stop filter is the opposite of a band-
pass filter. It lets all frequencies go through or pass, 
except for some band of frequencies, which it 
suppresses or stops, as sketched to the right. 
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Passive filter circuits 
• In this section, some simple passive filter circuits are constructed and analyzed.  
• Resistors, capacitors, and inductors are the only components used to construct passive filters. As mentioned 

in the introduction, active filters use operational amplifiers and feedback circuits, and are not discussed here. 
 
First-order passive low-pass filter 
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• A resistor and capacitor can be used together to create a simple first-order passive 
low-pass filter, whose circuit is shown to the right. 

• Consider an input voltage that is a pure sine wave of frequency f (or angular 
frequency ω = 2πf ), with no DC offset or phase shift – it is an AC voltage. 

• The input voltage is of the form ( ) ( )in p psin 2 sinV V ft V tπ ω= = , where Vp is the peak 

voltage or amplitude A of the signal, which is also equal to inV . Note: The peak-to-

peak amplitude Vp-to-p is equal to twice Vp, i.e., p-to-p p2V V= .  
• Output voltage Vout is measured by some device (voltmeter, oscilloscope, etc.). 
• It is always assumed that the device that measures output voltage Vout has infinite impedance. This means 

that the measuring device does not affect the circuit in any way. For example, it does not draw any current or 
cause any voltage drop. In other words, it is a non-intrusive measuring device.  

• Modern digital multimeters (DMMs), oscilloscopes, and PC data acquisition cards 
have huge, but not infinite impedance, so the above assumption is very good.  Vin R 

C Vout

• To analyze the low-pass filter circuit, we think of it as a simple voltage divider, 
except with one of the resistors replaced by a capacitor, as sketched to the right. 

• Instead of resistance, impedance is used to analyze this divider circuit.  
• Recall that for the resistor, ZR = R, and for the capacitor, ZC = 1/(iωC), where we use 

bold fonts to indicate complex variables.  

• Impedance adds in series just like resistance, so total
1

R C R
i Cω

= + = +Z Z Z . 

• Just as for a simple resistor voltage divider circuit, the output voltage here is equal to the input voltage times 
a linear fraction of the impedances as follows (note that the bolded output voltage Vout is complex): 
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• After rearranging and multiplying and dividing by the complex conjugate of the denominator, the complex 

voltage is split into its real and imaginary components, out in
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• It turns out that the magnitude of Vout is the magnitude of the output voltage Vout itself, and the angle of Vout 
in the complex plane is the phase shift φ of Vout compared the input signal Vin. 

• Recall that the magnitude of a complex number is a real number called the modulus. Mathematically, we 
find the magnitude or modulus of a complex number by taking the square root of the sum of the real part 

squared and the imaginary part squared, out outV = V  = 
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, or finally, 
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• The cutoff radian frequency (also called the corner radian frequency, or sometimes the break radian 

frequency) for this simple passive RC low-pass filter circuit is defined as cutoff
1

RC
ω = , noting that this is the 

radian frequency (radians per second), not the physical frequency (Hz).  



• Since ω = 2πf, the physical cutoff frequency fcutoff is defined as cutoff
cutoff

1
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f
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= = . 

• Then, the magnitude of the output voltage is re-written in terms of radian frequencies as 
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• For this first-order passive low-pass filter, the gain is out
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• For this simple filter, G lies between 0 and 1.  
• Note that the gain G of the filter can also be thought of as the ratio of the peak amplitude of Vout to the peak 

amplitude of Vin, or, multiplying numerator and denominator by two, G can be thought of as the ratio of the 
peak-to-peak amplitude of the output voltage to the peak-to-peak amplitude of the input voltage. 

• The phase shift φ of the output signal is calculated as the angle of Vout in the complex plane, 
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• Since Vin is a pure sine wave without any DC offset, recall that we write it as ( )in p sinV V tω=  = ( )in sinV tω , 

where inV  is the peak amplitude of the input voltage signal ( )in pV V= .  

• In similar fashion, Vout is also a pure sine wave without any DC offset, but with a phase shift; we write it as 
( )out out sinV V tω φ= + , where outV  is the peak amplitude of the output voltage signal, as calculated above. 

• What does all this mean physically, and why is this considered a low-pass filter circuit? Well, let us analyze 
what happens to both DC and AC voltage signals:  
o For a DC signal, ω = 0, so ω/ωcutoff = 0, and thus out inV V= , G = 1, and φ = 0. 

 In other words, Vout = Vin. 
 The low-pass filter circuit does not affect a DC signal at all.  

o For a low frequency AC signal, ω << ωcutoff, so ω/ωcutoff << 1, and thus out inV V≈ , G ≈ 1, and φ ≈ 0. 
 In other words, Vout ≈ Vin, with no significant phase shift. 
 Low frequency components pass through the low-pass filter circuit without much effect. 
 This is why it is called a “low-pass” filter, by the way.  

o For an AC signal with a frequency exactly equal to the cutoff frequency, ω = ωcutoff, so ω/ωcutoff = 1, and 
thus out in / 2V V= , G = 1/ 2 0.707≅ , and φ = −arctan(1) = −π/4 = −45o. 

 In other words, out in / 2V V= , but with a −45o phase shift. 
 A component of the input signal at exactly the cutoff  frequency is attenuated by the circuit with a 

gain of (about 70.7%), and has a −45o phase shift. 1/ 2 0.707≅
o For a high frequency AC signal, ω >> ωcutoff, so ω/ωcutoff >> 1, and thus out 0V → , G → 0, and, since 

arctan(∞) = π/2, φ → −π/2 = −90o. 
 In other words, Vout → 0, but with a −90o phase shift. 
 High frequency components are attenuated or filtered by the low-pass filter circuit, and have a −90o 

phase shift.  
• Below are summary plots for this first-order low-pass filter, created in Excel, and plotted with log-log axes. 

On the left is the frequency response diagram, and on the right is the phase shift diagram. These plots are 
collectively called Bode plots. 
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o Notice how the low frequencies pass relatively unaffected, but the high frequencies get attenuated. 
o Also notice that the drop-off with frequency looks linear on this log-log plot. 
o The phase angle is zero (no phase shift) for very low frequencies, but falls off rapidly – at the cutoff 

frequency, the phase shift is already significant (−45o). 
o For high frequencies the phase shift asymptotes to −90o. 

• The phase shift is illustrated in another way on plot shown to the right, where the input and output signals are 
plotted for comparison, at some arbitrary frequency of the sine wave.  

t 

Input V 
• Notice three things:  

o The frequency of the output signal is the same as that of the input 
signal. 

Output 

o The output signal is smaller in magnitude than the input signal, 
since the gain is less than 1. 

o The phase of the signal has shifted. Since the phase shift is 
negative, we say that the output lags the input (the peak occurs at 
a later time).  

 
• Example: 

Given: Noise at 1000 Hz is superimposed on a “carrier” frequency of 10 Hz. It is desired to apply a first-
order passive low-pass filter to remove the noise so that only the carrier signal remains. 

To do: (a) Choose the cutoff frequency of the low-pass filter. (b) If a capacitor with capacitance of 0.10 μF is 
available, what resistor should be used? (c) How much of the noise is reduced by this filter? 

Solution: 
(a) Obviously, the cutoff frequency must lie somewhere between 10 and 1000 Hz. If we pick a cutoff 

frequency too close to 10 Hz, some of the desired signal is attenuated. On the other hand, if the cutoff 
frequency is too big, the attenuation of 1000 Hz noise may not be enough. Let’s pick 50 Hz as a 
reasonable choice for the cutoff frequency. Answer: cutoff 50 Hzf = . 

(b) From the previous discussion, we know that cutoff
cutoff
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= = , which we solve for resistance R, 

yielding 
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3.1831 × 104 Ω. Answer to two significant digits: 43.2 10  32. kR = × Ω = Ω . (Notice the unity conversion 
factors in the calculation.) 

(c) To answer this question, we enter the noise frequency (1000 Hz) and the cutoff frequency (50 Hz) into 

the equation for the gain G of the filter, out

2
in
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V f
f
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2
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. Answer 

to two significant digits: 0.050G = . In other words, the noise is reduced by a factor of about 20. 
Discussion: Although we have significantly reduced the noise, we cannot totally eliminate it; a higher-order 

low-pass filter would reduce the noise even more effectively.  
 



• It is standard to express the gain of both amplifiers and filters in terms of decibels, 
out

dB 10 10
in

20log 20log
V

G G
V

= = . In the above example, GdB = 20log10(0.049938) = −26. dB.  

• It is useful to also calculate the gain imposed by this filter on the 10 Hz signal. (Recall that the 10 Hz signal 
is the desired signal here.) Using the same equations as above, but with f = 10 Hz, we calculate the gain of 
the low-pass filter at a frequency of 10 Hz to be G = 0.9806, or GdB = 20 log10(0.9806) = −0.17 dB.  

• Is this filter adequate? The answer depends on the application. With this filter, the noise at 1000 Hz is 
reduced by a factor of 20, while the desired signal itself (10 Hz) is reduced by about 2 percent. For most 
applications, this is fine. However, if more attenuation of the noise is required, or if a two percent reduction 
of the signal is too much, then this filter would not be adequate. In such a case, the engineer would choose a 
higher-order filter, as discussed later.  

 
First-order passive high-pass filter 

• A resistor and capacitor can be used together to create a simple first-order passive 
high-pass filter circuit. For a high-pass filter, the resistor and capacitor of the low-
pass filter switch positions as shown to the right. 

• The algebra to determine the filter function and the phase shift is similar to that 
performed above for the low-pass filter, and is not shown in detail here.  

• Below is a summary of the equations for the output voltage signal for this simple 
passive first-order high-pass filter, noting that ( )in in sinV V tω= and ( )out out sinV V tω φ= + , as previously: 
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frequency itself is the same as defined previously for the low-pass filter, namely, cutoff
cutoff
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f
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• We again analyze what happens to both DC and AC voltage signals, to help us understand what a high-pass 
filter is doing to the signal:  
o For a DC signal, ω = 0, ωcutoff/ω → ∞, outV  → 0, G → 0, and φ ≈ π/2 = 90o. 

 In other words, Vout = 0. (It has a 90o phase shift, but this is inconsequential since the output is zero.) 
 The high-pass filter circuit completely cuts off or removes a DC signal.  

o For a low frequency AC signal, ω << ωcutoff, ωcutoff/ω >> 1, out 0V → , G → 0, and φ → π/2 = 90o. 
 In other words, Vout ≈ 0, but with a 90o phase shift. 
 Low frequency components are attenuated or filtered by the high-pass filter circuit, and have a 90o 

phase shift. 
o For an AC signal with a frequency exactly equal to the cutoff frequency, ω = ωcutoff, ωcutoff/ω = 1, 

out in / 2V V= , G = 1/ , and φ = arctan(1) = π/4 = 45o. 2 0.707≅

 In other words, out in / 2V V= , but with a 45o phase shift. 
 A component of the input signal at exactly the cutoff  frequency is attenuated by the circuit with a 

gain of (about 70.7%), and has a 45o phase shift. 1/ 2 0.707≅
o For a high frequency AC signal, ω >> ωcutoff, ωcutoff/ω << 1, out inV V≈ , G ≈ 1, and φ ≈ 0. 

 In other words, Vout ≈ Vin, and there is no significant phase shift. 
 High frequency components pass through the high-pass filter circuit without much effect.  
 This is why it is called a “high-pass” filter, by the way.  

• Below are the Bode plots for this first-order high-pass filter, created in Excel, and plotted with log-log axes. 
On the left is the frequency response diagram, and on the right is the phase shift diagram. 
o The plots are basically opposite to those of the low-pass filter – the high frequencies pass through 

relatively unaffected, but the low frequencies get attenuated. 
o Also notice that the drop-off with frequency looks linear on this log-log plot. 
o The phase angle is zero (no phase shift) for very high frequencies, but rises rapidly at the frequency is 

reduced – at the cutoff frequency, the phase shift is already significant (45o). 
o For low frequencies the phase shift asymptotes to 90o. 
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• The phase shift is illustrated in another way on the plot shown to the right, where the input and output signals 
are plotted for comparison, at some arbitrary frequency of the sine wave. 

• Notice three things:  
o The frequency of the output signal is the same as that of the input 

signal. 
o The output signal is smaller in magnitude than the input signal, 

since the gain is less than 1. 
o The phase of the signal has shifted. Since the phase shift is 

positive, we say that the output leads the input (the peak appears 
to occur at an “earlier” time).  

 

First-order passive band-pass filter 
• A first-order passive band-pass filter circuit is created by using the output of the low-pass filter as the input 

for the high-pass filter (low-pass filter and high-pass filter in series), as 
shown to the right. 

t 

Input V 

Output 

Vin 
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C2 

C1 

R1 
Vout

• The left portion of the schematic diagram represents the low-pass filter, 
and the right portion represents the high-pass filter.  

• Here there are two cutoff frequencies to define – a low-pass cutoff 
frequency and a high-pass cutoff frequency: 

o In terms of radian frequency, cutoff, 1
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1
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ω =  and cutoff, 2
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o In terms of physical frequency, cutoff, 1
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=  and cutoff, 2
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f
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= . 

 

Second-order passive low-pass filter 
• If an inductor is added to the resistor and capacitor of a first-order low-pass filter, we create a higher-order 

low-pass filter, as shown in the circuit to the right. It turns out that this filter 
behaves as a second-order passive low-pass filter.    

Vin 

R 

C
Vout

L • Higher-order filters may introduce some “wiggles” in the time-response 
characteristics of the filter, due to second-order dynamic system behavior. 

 

Higher-order low-pass filters 
• Butterworth filters of higher order can be constructed, usually with op amps 

rather than simply with resistors, capacitors, and inductors – these are called 
active filters.  

• In general, for a Butterworth low-pass filter of order n, the gain is 
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• Compared to a simple first-order low-pass filter, the equation for G is identical except that the exponent of 
the frequency ratio is 2n instead of 2. Thus, the simple passive first-order low-pass filter discussed earlier is a 
Butterworth low-pass filter of order 1 (n = 1). 



• Higher-order filters have a much faster roll-off rate. For a given cutoff frequency, this means that the filter 
attenuates high frequencies much better, as illustrated in the plot below for Butterworth filters of order 1, 2, 
4, and 6. 
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• For example, using the same numbers as in the example above (noise at f = 1000 Hz and fcutoff = 50 Hz), the 

gain of a 4th-order low-pass Butterworth filter is 
( )
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. 

• Or, in terms of decibels, the gain is GdB = −104. dB. Notice how much better is this attenuation, compared to 
that of a first-order filter, for which the gain was G = 0.050, or GdB = −26. dB.  

• Meanwhile, at the desired signal frequency of 10 Hz, the gain is 0.9999987 or −0.000011 dB, which is 
negligible.  

• In other words, this filter greatly attenuates the 1000 Hz noise, but does not affect the 10 Hz component of 
the signal. 

• Commercial Butterworth filters can be purchased with adjustable order, typically of order 1, 2, 4, 6, and 8. 
 


