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Introduction  
 When the frequency content of a signal is known, or at least approximately known, it is easy to choose the 

sampling frequency – we choose a sampling frequency larger than twice the maximum expected frequency of 
the signal (using the Nyquist criterion).  

 In this learning module, we discuss what to do in situations in which the frequency content of a signal is 
unknown (as in many typical laboratory situations). In particular, how then can we avoid aliasing errors? 

 

Apply a low-pass (anti-aliasing) filter 
 The best way to eliminate aliasing errors entirely is to filter the signal before taking the digital data.  

o In particular, a low-pass filter is used; thus, a low-pass filter is often called an anti-aliasing filter. 
o Here is how this anti-aliasing-filter technique works: 

 A low-pass filter lets low frequency components of the signal pass through (that’s why it is called a 
“low-pass” filter), but cuts off frequency components above some specified cutoff frequency. 

 An ideal low-pass filter abruptly cuts off the high frequency content of the signal – all content of the 
signal at frequencies greater than the cutoff frequency is removed. 

 Ideally then, the cutoff frequency of the ideal low-pass filter is set to one-half of the sampling 
frequency to avoid aliasing, fcutoff = fs /2 (following the Nyquist criterion). 

 That way, all frequencies that would have produced aliasing errors are removed from the signal 
before the digital data are sampled, and therefore no aliasing is possible. 

o Unfortunately, real-life low-pass filters do not cut off high frequencies abruptly; instead, the attenuation 
of higher frequencies falls off rather slowly with frequency. 

o Because of this, most real-life data acquisition systems employ a cutoff frequency several times smaller 
than the sampling frequency to ensure proper anti-aliasing.  

 Low-pass filters are discussed in more detail in another learning module. 
 

Sample at different sampling frequencies 
 Even without a low-pass anti-aliasing filter, we are often able to analyze the frequency content of the signal 

by sampling at several different sampling frequencies, and comparing the corresponding frequency spectra.  
o Principle: If we sample at two different sampling frequencies, and the peaks in the frequency spectra 

appear at different frequencies, we can be sure that aliasing errors are occurring. 
o In this case, the sampling frequency must be continually increased until the peaks in the spectra do not 

change, and the aliased peaks can be consistently explained. An example is provided below.  
 In many practical applications, such as measurement of turbulent fluctuations in a fluid flow, there are 

sometimes no distinct peaks in the frequency spectrum; instead there is a broad range of frequencies that 
contribute to the spectrum. 
o In this type of situation, instead of a sharp peak, we see a broad bump in the frequency spectrum. 
o If the sampling frequency is high enough, the frequency spectrum should drop off toward zero amplitude 

near the folding frequency of the spectrum. Otherwise, we are not sampling at a high enough frequency, 
and the high-frequency components of the signal may contribute to aliasing errors. 

 These techniques are best illustrated by examples, as follows.  
 

Example 
 To illustrate how to correctly find the frequency content of a signal, a voltage signal with more than one 

frequency component, along with some random noise, is measured using digital data acquisition. 
 We do not know the frequency content of the signal, but we expect a frequency component around 15 Hz. 
 We sample at more than one frequency, as discussed above, to illustrate the technique. 
 The first case is sampled at fs = 30 Hz, with N = 256. Note that 30 Hz is chosen to illustrate the technique. In 

general, we start with a sampling frequency greater than twice the maximum expected frequency of the 
signal, in order to avoid potential aliasing problems. Since we expect a frequency component around 15 Hz 
in this example, we sample at twice that frequency. 

 The time trace and frequency spectrum are shown below for the first case, fs = 30 Hz and N = 256: 
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 There appears to be a strong 10 Hz component of this signal (amplitude around 0.8 V), along with an even 

stronger component at around 5.7 Hz (amplitude around 1.2 V). 
 Since the sampling time is arbitrary, there is some leakage, as discussed in a previous learning module. 
 The rest of the frequency spectrum shows random noise.  
 Can this spectrum be trusted? In other words, is there possibly some aliasing error? One quick way to tell is 

to sample at a higher frequency. 
 Note: It is important to sample at a new sampling frequency that is not an integer multiple of the previous 

sampling frequency; otherwise it is possible for the aliasing frequency to appear the same in both spectra. 
[This would potentially give us a false confidence in our frequency analysis.] 

 For example, 60 Hz (30  2), 90 Hz (30  3), etc. would not be good choices for our new fs. 
 We choose fs = 66 Hz. (N is kept at 256 for all of these examples.) The time trace and the corresponding 

frequency spectrum are shown below. (Note: The sampling period T has been reduced from about 8.5 s to 
about 3.9 s, since we are sampling at a higher frequency but with the same number of data points.) 

 

fs = 30  Hz 
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 The peak at 10 Hz is still present, but the one at 5.7 Hz is gone; in its place is a peak at 30.3 Hz! Clearly, 

aliasing errors occurred in the first case, and the sampling rate may still not be high enough.  
 We examine the first two cases to see if they are consistent:  

o Sampling at 66 Hz yields a frequency component at 30.3 Hz.  
o Since fs = 66 is greater than 2(30.3) = 60.6, it is possible that this represents a legitimate frequency 

component of the signal.  
o If this is legitimate, we should be able to predict the aliased frequency from the first case. Let’s check:  

 Sampling at fs = 30 Hz yields a frequency component at 5.7 Hz.  
 If the actual frequency component of the signal were 30.3 Hz, we can predict the aliasing frequency, 

fa = | f  fs NINT(f /fs)| = |30.3  30.0NINT(30.3 /30.0)| = 0.3 Hz when sampling at 30 Hz.  
 However, this is not consistent with the observed frequency of 5.7 Hz when sampling at 30 Hz.  

o So, because of the inconsistencies, we conclude that the sampling rate of 66 Hz is still not high enough.  
o Sampling must be increased to an even higher frequency to resolve the problem.  

 We must sample at an even higher sampling frequency than 66 Hz. We need to choose a frequency that is not 
an integer multiple of either of the first two (30 and 66). So, for example, 90 Hz would not be a good choice 
(30  3). 96 would not be a good choice either, since it is the sum of 30 and 66. 100 Hz is a good choice. 

 We sample a third case at 100 Hz. We do not show the time traces from here on. The frequency spectrum is 
shown below: 

 
 This time, the peak at 10 Hz remains – we are confident now that the peak at 10 Hz is real. But the other 

peak has again moved – this time to about 35.7 Hz. Apparently, the previous peaks at 5.7 Hz and 30.3 Hz are 
not real, but are falsely perceived due to aliasing. 

 This indicates that fs = 66 Hz is still not a high enough sampling frequency to avoid aliasing.  
 Is 100 Hz a sufficient sampling rate for this signal? Is aliasing still a problem? To check, we examine the first 

three cases to see if they are consistent:  
o When fs = 100 Hz, the peak frequency is at 35.7 Hz, but when fs = 66 Hz, the peak is at 30.3 Hz.  
o If the actual frequency component of the signal were 35.7 Hz, we could predict an aliasing frequency of 

fa = | f  fs NINT(f /fs)| = |35.7  66.0NINT(35.7 /66.0)| = 30.3 Hz when sampling at 66 Hz. This is 
consistent with the frequency observed when sampling at 66 Hz.  

fs = 66  Hz 

fs = 100  Hz 
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o When sampling at 30 Hz, if the actual frequency component of the signal were 35.7 Hz, we could predict 
an aliasing frequency of fa = | f  fs NINT(f /fs)| = |35.7  30.0NINT(35.7 /30.0)| = 5.7 Hz. This is 
consistent with the frequency observed when sampling at 30 Hz.  

o Thus, since everything is now consistent, we conclude that the sampling rate of 100 Hz is high enough.  
o The bottom line – the signal contains:  

 A component at 10 Hz, with an amplitude greater than 0.75 volts (the exact amplitude cannot be 
known because leakage has reduced the height of the peak at 10 Hz).  

 A component at 35.7 Hz, with an amplitude greater than 1.2 volts (the exact amplitude cannot be 
known because leakage has reduced the height of the peak at 35.7 Hz).  

 Some low amplitude noise at all frequencies (random noise).  
 As a final check, another case is run at a sampling frequency of 125 Hz, the spectrum of which is shown: 

 
 Now, finally, the peaks have remained at the same frequencies (10 Hz and 35.7 Hz) as previously. We are 

very confident now that the signal is being sampled at high enough frequency to avoid aliasing. The two 
major peaks in the frequency spectrum have been correctly captured.  

 

Why not sample at a really high frequency to begin with? 
 Why didn’t we just sample at a very high frequency right at the beginning, and avoid all this trouble? 
 To answer this question, we do one more case, at a sampling frequency of fs = 500 Hz, while keeping the 

number of data points at N = 256. The frequency spectrum is plotted below: 

 
 If this were the first spectrum we created, there would be several problems: 

o With this one spectrum, we cannot be sure that the observed peaks are real or aliased, unless we know 
for certain beforehand that the maximum possible frequency in the signal is below 250 Hz. 

o The frequency resolution has been reduced significantly. For example, at a sampling frequency of 100 
Hz, and with 256 data points, f = 1/T = fs /N = (100 Hz)/256 = 0.391 Hz. By comparison, at a sampling 
frequency of 500 Hz, and with 256 data points, f = 1/T = fs /N = (500 Hz)/256 = 1.953 Hz. 

o In fact, the peaks in the above spectrum occur at 9.76 and 35.2 Hz instead of 10.0 and 35.7 Hz – we lose 
frequency resolution at high sampling frequencies. 

o Data sampled at frequencies greater than twice the frequency component at 35.7 Hz are “wasted.” 

fs = 125  Hz 

fs = 500  Hz 



How to Analyze the Frequency Content, Page 5 

Effect of adding an anti-aliasing filter 
 So far, this signal was not filtered in any way. There is still non-zero amplitude due to noise in the signal, 

apparently at all frequencies, even those near the folding frequency of 250 Hz for the case with fs = 500 Hz.  
 However, the high frequency energy is merely noise, and is really of no interest in this particular problem.  
 One way to remove the high frequency noise in this example is to low-pass filter the signal, using a cutoff 

frequency somewhat above the maximum frequency of interest in the problem, which is 35.7 Hz here, and 
then sample at a frequency several times higher than this cutoff frequency, depending on the type of low-pass 
filter used.  

 To illustrate, the signal is filtered with an eighth-order low-pass Butterworth filter, with a cutoff frequency of 
50 Hz. Data are sampled at fs = 150 Hz and N = 256. The frequency spectrum is shown below: 

 
 Notice how the magnitude of the frequency spectrum drops off beyond the cutoff frequency, as desired.  
 Note: Due to the random nature of the signal, the signal sampled for this FFT is not the identical signal that 

had been sampled for the previous FFTs.  
 Only now can we completely trust the results of the frequency spectrum. In this example, we state 

confidently the following:  
o There is a frequency component of the signal at 10 Hz, with an amplitude greater than 0.9 V.  
o There is an even stronger frequency component at 35.7 Hz, with an amplitude greater than 1.4 V.  
o There is random noise over the rest of the frequency range.  
o There may be some other minor peaks at frequencies above 75 Hz, but these cannot be identified, and are 

not of interest; they are buried in the background noise.  
 This example illustrates some of the frustrations and problems associated with FFT spectral analysis. You 

must be very careful when applying FFTs so that the frequency spectrum yields the correct frequency content 
of the signal! 

fs = 150  Hz 

Cutoff 
frequency 


