M E 345

Lecture 02

Today, we will:

- Review: Do some more example problems significant digits
- Review the pdf module: Dimensional Analysis and do some example problems
- Review the pdf module: Review of Basic Electronics

Example: Significant digits

Given: Three quantities are measured: a = 7.55, b = 6.044, and c = 10.451.

To do:

(a) Calculate a - b, giving your answer to the appropriate precision and number of significant digits.

Solution:

(b) Given the same three quantities: a = 7.55, b = 6.044, and c = 10.451. Calculate a + b + c, giving your answer to the appropriate precision and number of significant digits.

Solution:

(c) Given the same three quantities: a = 7.55, b = 6.044, and c = 10.451. Calculate the average of a, b, and c to the appropriate precision and number of significant digits.

Solution:

Example: Primary dimensions – shear stress, force per unit length, and power (*a*) **Given**: In fluid mechanics, shear stress τ is expressed in units of N/m².

To do: Express the primary dimensions of τ , i.e., write an expression for $\{\tau\}$. **Solution**:

(b) Given: Ray is conducting an experiment in which quantity *a* has dimensions of force per unit length.

To do: Express the primary dimensions of a, i.e., write an expression for $\{a\}$. **Solution**:

(c) Given: Power \dot{W} has the dimensions of energy per unit time.

To do: Write the dimensions of power in terms of primary dimensions. **Solution**:

Example: Dimensional analysis – shaft power		
Given:	The output power \dot{W}	of a spinning shaft is a function of torque T and angular
velocity <i>w</i> .		

To do: Express the relationship between \dot{W} , *T*, and ω in dimensionless form.

Solution:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6: