M E 345

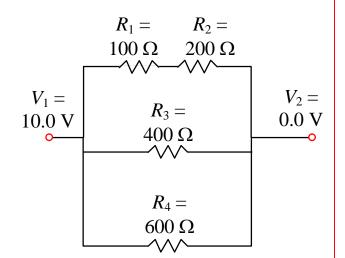
Professor John M. Cimbala

Lecture 03

Today, we will:

- Do some example problems basic electronics and dimensional analysis
- Review the pdf module: Errors and Calibration and do some example problems
- Review the pdf module: Basic Statistics and do some example problems

Example: Basic electronics


Given: The circuit shown.

To do:

(*a*) Calculate the equivalent resistance of this circuit.

(*b*) Calculate the total current through this circuit.

(*c*) Calculate the power used by this circuit. **Solution**:

Example: Basic electronics

Given: A bunch of 10 k Ω resistors is available in the lab. We have need for a resistance of 22 k Ω for a circuit we are building on a breadboard.

To do: Figure out how to create the required resistance from the available resistors.

Solution:

Example: Basic electronics

Given: A voltage signal has a DC offset. We want to remove the DC offset so that the frequency content of the AC (fluctuating) component can be analyzed.

To do: Figure out how to remove the DC offset with a *single* electronic component (i.e., one resistor *only*, or one capacitor *only*, or one inductor *only*, etc.).

Solution:

Given : very long re	Dimensional analysis – pipe flow Consider fully developed laminar flow through a pound tube. Volume flow rate \dot{V} is a function of the r diameter <i>D</i> , fluid viscosity μ , and axial pressure D/dx . D \dot{V} μ μ Pressure gradient = dP/dx
To do:	If D is doubled, holding μ and dP/dx fixed, by what factor does \dot{V} change?
Solution:	Use dimensional analysis to generate a nondimensional functional relationship.
~	· · · · · · · · · · · · · · · · · · ·
Step 1:	
Stop 2.	
Step 2:	
Step 3:	
Stop 4.	
Step 4:	
Step 5:	
Step 6:	

Answer: If *D* is doubled, holding μ and dP/dx fixed, \dot{V} goes up by a factor of _____.

Example: Errors and calibration Given:

- The actual (true) voltage is 4.6020 V.
- 256 voltage readings are taken, and the average voltage reading is 4.6015 V.

To do: (*a*) Calculate the systematic (bias) error and the mean bias error for this set of measurements. (*b*) Calculate the random (precision) error of a reading that is 4.6010 V.

Solution:

(a)

(b)

Example: Errors and calibration

Given:

- The actual (true) temperature is 22.100° C.
- Six thermometer readings are taken: 22.15, 22.22, 22.09, 22.21, 22.18, and 22.24°C.

To do: Calculate the mean, systematic error, and mean bias error for this set of data, and calculate the accuracy error (inaccuracy) and the precision error for each measurement.

$T_i (^{\circ}C)$	Inaccuracy = $T_i - T_{\text{true}}$ (°C)	Precision error = $T_i - \overline{T}$ (°C)
22.15		
22.22		
22.09		
22.21		
22.18		
22.24		

Solution:

[See also Excel spreadsheet on the website for this same problem]