Μ	E 345	Professor John M. Cimbala	Lecture 06
Today, we will:			
•	 Do some review example problems – The Gaussian PDF Review the pdf module: The Central Limit Theorem (CLT) and do some examples Review the first half of the pdf module: Other PDFs – the Student's <i>t</i> PDF 		
 Example: Review and probability Given: The temperature of an ice bath is measured numerous times with a digital thermometer. The <i>true</i> temperature of the ice bath is 0.0000°C. The sample mean temperature is T =-0.0125°C The sample standard deviation of all the readings is 0.0341°C We assume that the precision errors in the readings are purely random 			
(a)	To do:	Write T in standard engineering format, $T = -0.0125 \pm$	°C .

- (*b*) To do: Calculate the bias error (also called systematic error).
- (c) To do: Calculate the probability that any random reading is greater than 0° C.

Example: Probability – power requirement measurements

Given: Bev takes 200 measurements of the power requirement for an electronic instrument running in a steady-state mode. We assume that the precision errors are purely random. The sample mean is 35.92 W, and the sample standard deviation is 0.60 W.

To do:

(*a*) Considering the proper number of significant digits, show how Bev should write the power in standard engineering format (95% confidence level), i.e.,

 $P = 35.92 \pm$ W

(*b*) Calculate the percentage of the readings that are expected to be less than 35.92 W.

(c) Calculate the percentage of the readings that are expected to be greater than 37.12 W.

(*d*) Estimate the number of readings that are expected to be greater than 37.12 W.

Example: Estimating population standard deviation

Given: A company produces resistors by the thousands, and Mark is in charge of quality control.

- He picks 20 resistors at random as sample 1, and calculates the mean, \overline{x}_1 .
- He picks 20 *other* resistors as sample 2, and calculates the mean, \overline{x}_2
- Mark continues to do this until sample 25, and calculates the mean, \overline{x}_{25} .

The *average* of all the means is $\overline{(\overline{x_1})} = (\overline{x_1} + \overline{x_2} + ... + \overline{x_{25}})/25 = 8.235 \text{ k}\Omega$. The *standard deviation* of all the means is $\sigma_{\overline{x}} \approx S_{\overline{x}} = 0.282 \text{ k}\Omega$.

To do: Estimate the population standard deviation, σ . Solution:

Example: Estimating population standard deviation

Given: Ron takes 50 pressure measurements, and repeats this 19 more times, for a total of 20 samples of 50 data points each. He calculates the sample mean for each set (sample) of 50 measurements. The standard deviation of the 20 sample means is 0.150 kPa.

To do: Estimate the population standard deviation of all the measurements (in units of kPa to 3 significant digits).

Example: Estimating the population mean

Given: A company produces resistors by the thousands, and Gerry is in charge of quality control. He picks 20 resistors at random as a sample, and calculates the sample mean $\bar{x} = 8.240 \text{ k}\Omega$ and sample standard deviation $S = 0.314 \text{ k}\Omega$. **To do**:

(*a*) Estimate the **population mean** and the **confidence interval of the population mean** (as $a \pm value$) to standard 95% confidence level.

(*b*) Repeat for 99% confidence level. *Do you expect the confidence interval to be wider or narrower?*