Today, we will:

- Do a review example problem t PDF and chi-squared PDF
- Review the pdf module: Correlation and Trends and do some example problems
- Review the pdf module: Regression Analysis and do some example problems

Example: Estimating population mean and population standard deviation

Given: 20 ball bearings are pulled from the assembly line, and their diameters are measured. The sample mean is 2.56 mm and the sample standard deviation is 0.240 mm.

(a) To do: Estimate the population mean and its confidence interval for 98% confidence level.

(b) To do: Estimate the population standard deviation and its confidence interval for 98% confidence level.

Solution:

Example: Estimating population mean from a sample

Given: A company produces resistors by the thousands, and Mark is in charge of quality control. He picks 20 resistors at random as a sample, and calculates the sample mean $\bar{x} = 8.240 \text{ k}\Omega$ and the sample standard deviation $S = 0.314 \text{ k}\Omega$.

To do: Estimate the **confidence interval of the population mean** (as a \pm value) to standard 95% confidence level, i.e. fill in the blank: $\mu = 8.240 \pm 40.5$

Give your answer to three significant digits.

A portion of the critical *t* table is shown here for convenience.

Values of $t_{\alpha/2}$ (critical values) for the student's t distribution					
	90% confidence	95% confidence	98% confidence	99% confidence	
$\alpha = \rightarrow$	0.10	0.05	0.02	0.01	
df = ↓					
1	6.3137	12.7062	31.8210	63.6559	
2	2.9200	4.3027	6.9645	9.9250	
3	2.3534	3.1824	4.5407	5.8408	
16	1.7459	2.1199	2.5835	2.9208	
17	1.7396	2.1098	2.5669	2.8982	
18	1.7341	2.1009	2.5524	2.8784	
19	1.7291	2.0930	2.5395	2.8609	
20	1.7247	2.0860	2.5280	2.8453	
21	1.7207	2.0796	2.5176	2.8314	

Solution:

Example: Linear correlation coefficient

Given: Matt measures both the shoe size and the weight of 18 football players. He performs a linear regression analysis of shoe size (y variable) as a function of weight (x variable). He calculates $r_{xy} = 0.582$.

To do: To what confidence level can Matt state that a football player's shoe size is correlated with his weight?

Example: Linear correlation coefficient

Given: Several measurements are taken in a wind tunnel of pressure difference as a function of distance normal to the direction of flow over a body.

Data point	x (mm)	$\Delta P (kPa)$
1	0	0.356
2	2.0	0.679
3	4.0	0.478
4	6.0	0.564
5	8.0	0.390
6	10.0	0.581
7	15.0	0.805
8	20.0	0.723

(a) To do: Calculate the linear correlation coefficient

(b) To do: To what confidence level can we state that there is a trend in the data?

Solution:

Example: Regression Analysis

Given: The same pressure vs. distance measurements of the previous problem.

To do: Perform a linear regression analysis – plot the best-fit straight line and compare the fitted curve to the data points.

Solution:

See Excel spreadsheet – I will show in class how to do the regression analysis in Excel.