M E 345	Professor John M. Cimbala				Lecture 1
Today, we	will:				
• Review	the pdf modu	ıle: Experi	imental Un	utliers, data pairs certainty Analysis l uncertainty analysi	
Example: C	Dutliers – dat	a pairs			
Given:					
	Data point	x	у		
	1	0	3.7		
	2	0.1	4.2		
	3	0.2	5.1		
	4	0.3	6.6		
	5	0.4	7.4		
	6	0.5	8.9		
	7	0.6	10.4		
	8	0.7	10.9		
	9	0.8	11.9		
	10	0.9	11.5		
	11	1	12.2		
	12	1.1	14.7		

To do: Eliminate any "official" outliers, one at a time.

1.2

1.3

1.4

1.5

1.6

1.7

1.8 1.9

13

14 15

16

17

18

19

20

Solution:

See Excel spreadsheet on the website called Example_Outliers_data_pairs.xls – I will show in class how to do the analysis in Excel.

15.3

16.8

17.2

19.5

4.5

21.3

22.5

5.6

Example: Outliers – data pair measurements

Given: Omar takes 12 data pair measurements – temperature as a function of pressure. He performs a regression analysis and plots the data and the least-squares fit. One of the data pairs looks a little suspect, so he performs the standard statistical technique to determine if this data pair is an official outlier:

- The standard error (from the regression analysis) is 0.0244°C.
- The residual of the suspect data pair is 0.0468°C, and is the maximum residual.
- A plot of standardized residual vs. pressure reveals that the standardized residual of the suspect data pair is *inconsistent* with its neighbors.

To do: Is this data pair an official outlier or not?

Example: Experimental uncertainty analysis Given: The cutoff frequency of a simple first-order filter is $\omega = \frac{1}{RC}$, where

- $\omega = radian$ frequency (radians/s)
- R = resistance, measured to be $R = 1200 \ \Omega \pm 5\%$
- C = capacitance, measured to be $C = 0.100 \,\mu\text{F} \pm 1\%$

To do: Predict ω to 95% confidence in standard engineering format, and with the proper number of significant digits.

(to 95% confidence)

(to 95% confidence)

Example: Experimental uncertainty analysis Example

Given: Quantities *A* and *B* are measured, 200 times each:

- The sample mean and sample standard deviation for A are $\overline{A} = 5.20$ and $S_A = 0.252$.
- The sample mean and sample standard deviation for *B* are $\overline{B} = 22.32$ and $S_B = 1.05$.
- Quantity *C* is *not* measured directly, but it is *calculated* as $C = A^2 + 3B$.

To do: Report *C* in standard engineering format.

Example: Experimental uncertainty analysis

Given: Jan uses a thermocouple to measure temperature. She performs a regression analysis on temperature *T* (units = $^{\circ}$ C) as a function of thermocouple voltage *V* (units = mV). The best-fit straight line is *T* = *b* + *aV*, where *b* = -0.8152 $^{\circ}$ C and *a* = 23.182 $^{\circ}$ C/mV. She takes her voltage data with a digital data acquisition system that has an uncertainty of +/-0.124 mV.

To do: When the voltage reading is V = 5.520 mV, calculate the temperature with its appropriate uncertainties.

- We calculate: $\overline{T} = b + a\overline{V} = (-0.8152^{\circ}\text{C}) + (23.182\frac{^{\circ}\text{C}}{\text{mV}})(5.520 \text{ mV}) = 127.149^{\circ}\text{C}$
- This equation for *T* is *not* of the simple exponent type, because of the plus sign. So, we *cannot* use the simpler RSS equation. We *must* use the general RSS equation with derivatives,

$$u_T = \sqrt{\sum_{i=1}^N \left(u_{x_i} \frac{\partial T}{\partial x_i}\right)^2}$$

Example: Experimental uncertainty analysis

Given: In a fluid mechanics experiment, the change in pressure is $\Delta P = 1.06\rho V^2$, where

- ΔP = change in pressure (N/m², which is the same units as pascals, Pa)
- $\rho = \text{density}$, measured to be $\rho = 660. \pm 15.0 \text{ kg/m}^3$ (to 95% confidence)
- V = velocity, measured to be $V = 1.52 \pm 0.028$ m/s (to 95% confidence)

To do: Write ΔP at these values of ρ and V in standard engineering format.